

БЛОК ПЕРЕДАЧИ ДАННЫХ

дуплексный

БПДД-RS-M

Руководство по эксплуатации ECAH.426441.003РЭ

Редакция 12.01.07

Содержание

1 Описание и работа	3
1.1 Назначение	3
1.2 Выполняемые функции	
1.3 Основные технические характеристики	
1.4 Устройство и работа	6
1.5 Описание конструкции	8
1.6 Маркировка и пломбирование	10
1.7 Упаковка	10
1.8 Комплектность	11
2 Использование по назначению	11
2.1 Указание мер безопасности	11
2.2 Порядок монтажа.	
2.3 Подготовка к работе	
2.4 Включение в работу	
2.5 Пусконаладочные работы	16
3 Техническое обслуживание.	33
3.1 Общие указания	33
3.2 Меры безопасности.	33
3.3 Порядок технического обслуживания	33
4 Текущий ремонт	34
5 Хранение	35
6 Транспортирование	
6.1 Указания по транспортировке	36
6.2 Механические воздействия и климатические условия	
6.3 Меры предосторожности	36

1 Описание и работа

1.1 Назначение

Блок передачи данных дуплексный БПДД-RS-М предназначен для информационного сопряжения систем, построенных на основе интерфейса COC-95, с внешними устройствами по интерфейсу RS-232 (RS-485). БПДД-RS-М обеспечивает прием данных от внешнего устройства по интерфейсу RS-232 (RS-485) и передачу данных в контроллер COC-95 по информационно-питающей линии ИПЛ, а также передачу данных от контроллера COC-95 во внешнее устройство по интерфейсу RS-232 (RS-485). БПДД-RS-М является адресным устройством интерфейса COC-95 и работает под управлением контроллера интерфейса COC-95. Выбор вида интерфейса БПДД-RS-М осуществляется программным способом.

Внешний вид блока БПДД-RS-M показан на рисунке 1.

Рисунок 1

1.2 Выполняемые функции

БПДД-RS-М в режиме RS-232 обеспечивает:

- дуплексный информационный обмен данными с внешним устройством по интерфейсу RS-232 с буферизацией принимаемых и передаваемых данных;
- поддержку протоколов программного (XON, XOFF) квитирования при обмене с внешним устройством;
- дистанционную настройку режима работы (вид интерфейса, выключение интерфейса, порог приема COC-95);
 - контроль величины напряжения питания в линии ИПЛ;

- светодиодную индикацию выполнения внешним устройством процедуры записи данных в приемный буфер;
 - светодиодную индикацию информационного обмена по линии ИПЛ;
- передачу (по запросу) номера версии программы, идентификационного номера блока, служебной информации о текущем состоянии в контроллер СОС-95 по линии ИПЛ с использованием алгоритма контроля передачи данных CRC-8;
 - гальваническое разделение цепей интерфейса RS-232 и линии ИПЛ.

БПДД-RS-М в режиме RS-485 обеспечивает:

- полудуплексный информационный обмен данными с внешним устройством по интерфейсу RS-485 с буферизацией принимаемых и передаваемых данных;
- поддержку протоколов программного (XON, XOFF) квитирования при обмене с внешним устройством;
- дистанционную настройку режима работы (вид интерфейса, выключение интерфейса, порог приема COC-95);
 - контроль величины напряжения питания в линии ИПЛ;
- светодиодную индикацию выполнения внешним устройством процедуры записи данных в приемный буфер;
 - светодиодную индикацию информационного обмена по линии ИПЛ;
- передачу (по запросу) номера версии программы, идентификационного номера блока, служебной информации о текущем состоянии в контроллер СОС-95 по линии ИПЛ с использованием алгоритма контроля передачи данных СRС-8;
 - гальваническое разделение цепей интерфейса RS-485 и линии ИПЛ.

БПДД-RS-M позволяют в процессе настройки изменять следующие параметры конфигурации:

- адрес интерфейса COC-95;
- управляющую программу блока.

1.3 Основные технические характеристики

Основные технические характеристики блока БПДД-RS-M приведены в таблице 1.

Таблица 1

Характеристика	Значение
1 Количество каналов интерфейса RS-232 (RS-485)	1
2 Количество внешних устройств, подключаемых по интерфейсу RS-232, шт.	1
3 Количество внешних устройств, подключаемых по интерфейсу RS-485, шт.	1 – 32
4 Емкость буфера приема данных от внешнего устройства, байт	1024
5 Емкость буфера передачи данных к внешнему устройству, байт	256

Характеристика	Значение
6 Диапазон напряжения питания ИПЛ, В	14 – 30
7 Ток потребления от линии ИПЛ, мА, не более - в режиме ожидания - в режиме приема-передачи	4 25
8 Степень защиты оболочки по ГОСТ 14254-96	IP54
9 Габаритные размеры, мм, не более	136×123×31
10 Масса, кг, не более	0,3
11 Средняя наработка на отказ, ч, не менее	30000
12 Средний срок службы, лет	12
* Кабель должен иметь активное омическое сопротивлене более 100 пФ/м.	ение не более 40 Ом/км; емкость

Основные технические характеристики интерфейса RS-232 приведены в таблице 2. Tаблица 2

Характеристика	Значение	
1 Скорость передачи данных, бит/с	300, 600, 1200, 2400, 4800, 9600, 16000, 19200, 24000, 32000, 38400, 48000, 57600, 96000, 115200, 230400	
2 Длина линии связи «витая пара», м	15*	
3 Сопротивление нагрузки по постоянному току, кОм	3 – 7	
4 Максимальная емкость нагрузки, пФ	2500	
5 Напряжение выходных сигналов, В, не более, на нагрузке 3 кОм	±5	
6 Напряжение входных сигналов, В, не более	±3±30	
7 Напряжение переходной зоны, В	±3	
8 Скорость изменения напряжения, В/мкс, не более	30	
9 Ток короткого замыкания выхода передатчика, мА, не более	100	
10 Режим передачи	Асинхронная последовательная двухсторонняя одновременная передача данных между двумя устройствами	
11 Схема соединения	Один передатчик – один при- емник	
12 Типы сигналов	TXD – выход, передаваемые данные; RXD – вход, принимаемые данные; GND – сигнальное заземление, DTR - выход, готовность терминала	
*Длина линии связи «витая пара» не менее 10 м для скорости 115200 бит/с (с уменьшением скорости передачи до 1200 бит/с длина связи может быть увеличена до 1000 м)		

Основные технические характеристики интерфейса RS-485 приведены в таблице 3.

Таблица 3

Характеристика	Значение
1 Скорость передачи данных, бит/с	300, 600, 1200, 2400, 4800, 9600, 16000, 19200, 24000, 32000, 38400, 48000, 57600, 96000, 115200, 230400
2 Длина линии связи «витая пара», м, не более	1200
3 Входное напряжение приемника относительно земли, B, не более	от минус 7 до плюс 12 В
4 Выходное напряжение передатчика относительно земли, В, при сопротивлении нагрузки выхода передатчика 54 Ом	от ± 1,5 В до ± 5
5 Входное сопротивление приемника, кОм, не менее	12
6 Пороговое напряжение по входу приемника, мВ, не более	± 200
7 Ток короткого замыкания выхода передатчика, мА, не более	250
8 Режим передачи	Асинхронная последовательная двухсторонняя полудуплексная передача данных между устройствами
9 Схема соединения	Один передатчик – 32 приемни-ка
10 Типы сигналов	А, В – двунаправленные входы/выходы передачи данных, GND – сигнальная земля

Условия эксплуатации БПДД-RS-M:

- температура окружающего воздуха от минус 10 до плюс 55 °C;
- относительная влажность окружающего воздуха до 95% при 30° C, без конденсации влаги;
 - отсутствие в воздухе примесей, вызывающих коррозию.

1.4 Устройство и работа

БПДД-RS-M состоит из следующих функциональных устройств (рисунок 2):

- стабилизатора напряжения;
- устройств интерфейса СОС-95;
- устройств интерфейса RS-232/ RS-485.

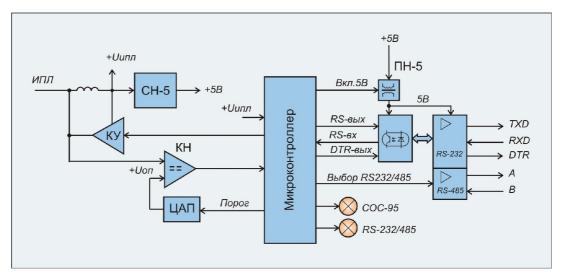


Рисунок 2

Электропитание БПДД-RS-М осуществляется от линии ИПЛ. Постоянная составляющая напряжения ИПЛ поступает через фильтр нижних частот на импульсный стабилизатор напряжения СН-5, формирующий постоянное напряжение +5В для питания узлов блока. Фильтр обеспечивает разделение импульсных сигналов информационных посылок и постоянной составляющей напряжения ИПЛ.

Устройство интерфейса СОС-95 предназначено для приема импульсных сигналов информационных посылок запроса контроллера СОС-95 в ИПЛ, фильтрации помех, формировании выходных импульсных сигналов информационных посылок ответа в ИПЛ. Устройство интерфейса СОС-95 обеспечивает согласование уровней напряжения сигналов в ИПЛ и последовательного порта микроконтроллера. БПДД-RS-М выполняет функции адресного устройства интерфейса СОС-95, т.е. принимает и выполняет адресованные ему команды контроллера интерфейса СОС-95, формирует ответные информационные слова на принятые команды, а так же осуществляет контроль принимаемой информации. Обмен с БПДД-RS-М осуществляется методом двухсторонней поочередной передачи информационных посылок по принципу «команда контроллера СОС-95 - ответ адресного устройства СОС-95». Информация передается по ИПЛ интерфейса СОС-95 последовательным цифровым кодом, используется времяимпульсная модуляция постоянной составляющей напряжения ИПЛ. БПДД-RS-М имеет программируемый индивидуальный адрес интерфейса СОС-95, который можно многократно изменять.

Импульсы сигнала запроса, сформированные контроллером интерфейса СОС-95 в ИПЛ, поступают на вход компаратора напряжения КН, где происходит выделение полезного сигнала от помех и восстановление формы сигнала и, далее, на вход последовательного порта интерфейса СОС-95 микроконтроллера. Напряжение порога срабатывания U_{ОП} компаратора КН устанавливается по командам контроллера СОС-95 при помощи ЦАП так, чтобы обеспечивался уверенный прием импульсных сигналов информационных посылок даже при наличии сигналов шума. Микроконтроллер декодирует импульсную последовательность запроса, выделяет поля адреса, команды, данных, и, в соответствии с принятой командой, выполняет соответствующие действия, затем формирует ответное слово на выходе порта в формате интерфейса СОС-95. Сигналы с выхода порта интерфейса СОС-95 микроконтроллера поступают на усилитель мощности КУ, работающий в режиме ключа, который формирует импульсы ответа адресного устройства в линии ИПЛ. Таким образом, микроконтроллер программным способом осуществляет кодирование и декодирование информационных посылок по интерфейсу СОС-95.

Устройство интерфейса RS-232/485 предназначено для формирования информационных посылок в последовательном коде с уровнями сигналов по стандарту RS-232 или RS-485. Сигнал выбора вида интерфейса Выбор RS-232/485 формируется по командам контроллера СОС-95. Устройство интерфейса RS-232/485 состоит из преобразователя напряжения 5В, схемы гальванического разделения сигналов последовательного порта интерфейса, драйвера RS-232 (RS-485). Электропитание 5В для драйверов и схемы разделения осуществляется от преобразователя напряжения ПН-5. Драйвер RS-232, RS-485 предназначены для согласования уровней сигналов.

БПДД-RS-M контролирует значение величины напряжения питания в ИПЛ путем измерения постоянного напряжения $+U_{\text{ипл}}$ питания блока при помощи встроенного АЦП микроконтроллера, перевода кода в именованную величину (вольт) для дальнейшего считывания контроллером СОС-95 по ИПЛ.

БПДД-RS-М содержит светодиодные индикаторы наличия обмена по последовательным интерфейсам:

- «СОС-95» индикация обмена по информационно-питающей линии с контроллером СОС-95;
 - «RS-232/485» индикация обмена по интерфейсу RS-232 (RS-485).

Микроконтроллер работает под управлением программы, которая записывается в него при производстве блока. Смена версии управляющей программы БПДД-RS-М производится по интерфейсу СОС-95.

1.5 Описание конструкции

Корпус БПДД-RS-М состоит из пластмассовых крышки и дна. Внутри корпуса расположена электронная плата. На крышке блока расположены два зеленых светодиодных индикатора: «СОС-95» и «RS-232/485». Габаритные размеры БПДД-RS-М приведены на рисунке 3. В корпусе имеются два отверстия для крепления блока.

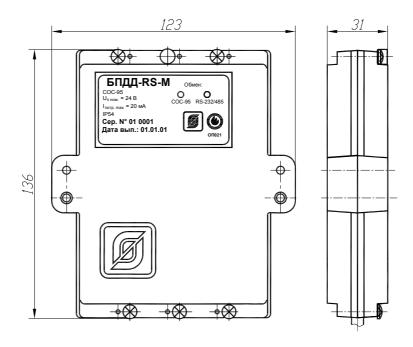


Рисунок 3

Назначение контактов цепей БПДД-RS-М приведено в таблице 4.

Таблица 4

Наименование разъема	Разъем и номер контакта	Обозначение цепи	Описание
	XS1 – 1	Rx_ISO	Вход, принимаемые данные (RS-232)
Интерфейс	XS1 – 2	Tx_ISO/B	Выход, передаваемые данные (RS-232), Двунаправленный вход/выход передачи данных (RS-485)
RS-232 (RS-485)	XS2 – 1	DTR_ISO/A	Выход, готовность терминала (RS-232), двунаправленный вход/выход передачи данных (RS-485)
	XS2 – 2	GND_ISO	Сигнальная земля (RS-485, RS-232)
Информационно	XS3 – 1	LINE	Плюс ИПЛ (коричневый)
-питающая линия	XS3 – 2	GND	Минус ИПЛ (синий)

Схема подключения БПДД-RS-М к ИПЛ СОС-95 приведена на рисунке 4.



Рисунок 4

1.6 Маркировка и пломбирование

Маркировка БПДД-RS-М расположена на лицевой стороне корпуса и содержит:

- товарный знак изготовителя;
- условное обозначение изделия «БПДД-RS-М»;
- условное обозначение типа интерфейса «СОС-95»;
- заводской номер изделия;
- надписи «U_{пит}=24В», «I_{потр. макс}=25 мА», «COC-95», «RS-232/485»;
- степень защиты оболочки «IP54»;
- знаки обязательной сертификации;
- дату выпуска изделия.

Транспортная маркировка содержит основные, дополнительные, информационные надписи и манипуляционные знаки «Хрупкое, осторожно», «Беречь от влаги», «Ограничение температуры», «Штабелирование ограничено». Маркировка транспортной тары производится по ГОСТ 14192.

Пломбу по ГОСТ 18677 устанавливает на корпус блока монтажно-наладочная организация.

1.7 Упаковка

БПДД-RS-М перед упаковкой в транспортную тару подвергают временной противокоррозийной защите, выполненной в соответствии с требованиями ГОСТ 9.014 для условий хранения 1 (Л) по ГОСТ 15150. Вариант консервации блока соответствует ВЗ-0 по ГОСТ 9.014. Вариант внутренней упаковки блока соответствует ВУ-5 без упаковочной бумаги по ГОСТ 9.014.

Эксплуатационная документация на блок упакована в полиэтиленовый пакет в соответствии с ГОСТ 23170.

Для транспортирования блок и документация упакованы в групповую тару - коробки из гофрированного картона по ГОСТ 9142. Коробки содержат средства амортизации и крепления изделий в таре.

1.8 Комплектность

Состав комплекта поставки БПДД-RS-М приведен в таблице 5.

Таблица 5

Обозначение	Наименование	Кол.	Примечание
ECAH.426441.003	Блок передачи данных дуплекс- ный БПДД-RS-М	1	
ЕСАН.426441.003ФО	Формуляр	1	на группу блоков
ECAH.426441.003PЭ	Руководство по эксплуатации	1	по требованию

2 Использование по назначению

2.1 Указание мер безопасности

ВНИМАНИЕ! При эксплуатации БПДД-RS-М все операции по замене элементов, а также подсоединение или отключение внешних цепей, необходимо проводить только при отключенном напряжении питания блока.

Блок БПДД-RS-M по способу защиты человека от поражения электрическим током выполнен класса защиты III по ГОСТ 12.2.007.0.

При подключении блока БПДД-RS-M к информационно-питающей линии интерфейса СОС-95 сразу подается напряжение к цепям блока.

При монтаже и эксплуатации БПДД-RS-М необходимо соблюдать:

- Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ Р M-016-2001;
- Правила эксплуатации электроустановок (ПУЭ) потребителей Главгосэнергонадзора России;
- действующие на предприятии инструкции по охране труда, технике безопасности и пожарной безопасности.

Степень защиты оболочки блока БПДД-RS-M соответствует IP54 по ГОСТ 14254.

К эксплуатации блоков БПДД-RS-М допускаются лица, аттестованные на право эксплуатации, изучившие настоящее РЭ, имеющие группу по электробезопасности не ниже III, удостоверение на право работы на электроустановках до 1000 В и прошедшие инструктаж по технике безопасности на рабочем месте.

При работе с ручными электроинструментами необходимо соблюдать требования ГОСТ 12.2.013.0-87.

При работе на высоте необходимо использовать только приставные лестницы и стремянки. При пользовании приставными лестницами обязательно присутствие второго человека. Нижние концы лестницы должны иметь упоры.

2.2 Порядок монтажа

Общие требования

Перед монтажом на объектах, сдаваемых под оборудование системами на базе интерфейса COC-95, должны быть выполнены строительные работы, в том числе:

- обеспечены условия безопасного производства монтажных работ, отвечающие санитарным и противопожарным нормам;
- проложены постоянные или временные сети, подводящие к объекту электроэнергию, с устройствами для подключения электропроводок потребителей;
- укреплены строительные конструкции, стекла вставлены и защищены от загрязнения, подвесные потолки и фальшполы раскрыты;
- проложены защитные трубы или смонтированы сооружения кабельной канализации для последующего монтажа кабельных линий связи и другой проводной продукции;
- обеспечена строительная готовность и ввод двух независимых источников электроснабжения в помещениях, где устанавливаются источники бесперебойного питания.

Места установки блоков систем на базе интерфейса COC-95, в общем случае, должны отвечать следующим требованиям:

- соответствующие условиям эксплуатации;
- отсутствие мощных электромагнитных полей;
- без скопления конденсата, отсутствие протечек воды сквозь перекрытия;
- защищенные от пыли, грязи, от существенных вибраций;
- удобные для монтажа и обслуживания;
- исключающие механические повреждения и вмешательство в их работу посторонних лиц;
- не создавать помех при дальнейшем увеличении количества прокладываемых кабелей;
 - на расстояние более одного метра от отопительных систем;
- недопустимо наличие в воздухе паров кислот, щелочей, сернистых и других агрессивных газов, превышающих ПДК.

При монтаже блоков систем на базе интерфейса СОС-95 запрещается:

- оставлять блоки со снятыми крышками;
- сверление дополнительных проходных отверстий в корпусах блоков;
- закручивание винтов для крепления корпусов с усилием, деформирующим корпус.

Перед монтажом блоков необходимо проверить:

- комплектность согласно эксплуатационной документации;
- наличие на блоках пломб;
- отсутствие повреждений корпусов и маркировки блоков.

Места установки

Место установки БПДД-RS-М должно выбираться с учетом следующих условий:

- блок должен быть установлен на стене на высоте, удобной для технического обслуживания в месте, где он защищен от механических повреждений и вмешательства в его работу посторонних лиц;
 - место установки блока должно соответствовать условиям эксплуатации.

БПДД-RS-M, как правило, устанавливают в щите ЩРНМ в помещении рядом с внешним устройством, подключенным к нему по интерфейсу RS-232 (RS-485).

Способ крепления

Вариант крепления БПДД-RS-М приведен на рисунке 5. Блок следует крепить к монтажной панели щита ЩРНМ с помощью двух винтов В.М4-6gx12.58.019 ГОСТ 17473-80. В монтажной панели ЩРНМ предварительно должны быть просверлены два отверстия и нарезана резьба М4. Разъем интерфейса RS-232 (RS-485) подсоединить к интерфейсному кабелю внешнего устройства согласно схеме подключения (рисунок 4). Выводы линии ИПЛ подключить к клеммам соединителя тройниковой коробки, соблюдая полярность, согласно схеме подключения (рисунок 4).

Тройниковую коробку устанавливают в тот же щит ЩРНМ. Расстояние между блоками в щите ЩРНМ должно быть не менее 30 мм, а с учетом беспрепятственного и удобного подсоединения внешних разъемов (расстояние не менее 90 мм).

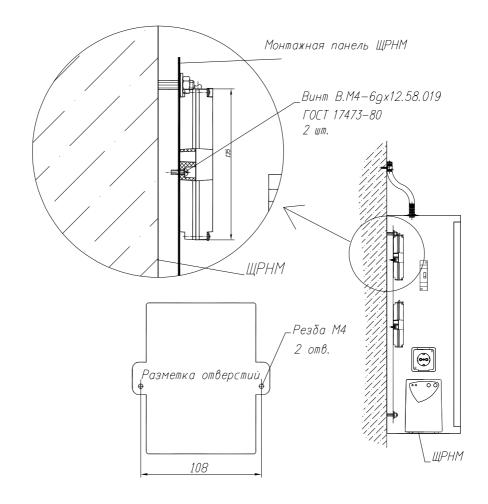
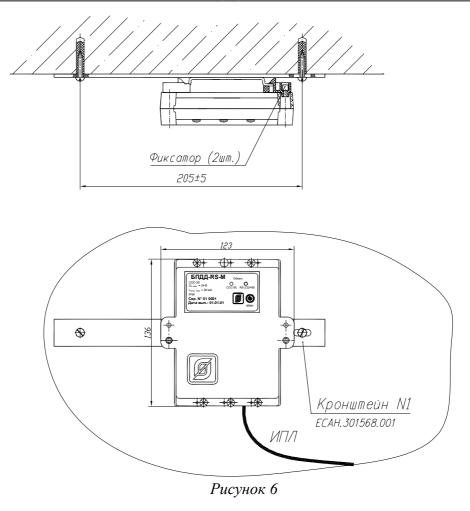



Рисунок 5

При необходимости БПДД-RS-M устанавливают на стене при помощи шурупов на дюбелях, используя крепежные отверстия в корпусе блока

Другой вариант крепления БПДД-RS-M показан на рисунке 6, блок устанавливают на стену или перекрытие с использованием кронштейна «№1» ECAH.301568.001. Крепление блока к кронштейну «№2» производить при помощи фиксаторов левого ECAH.758600.001-01 и правого ECAH.758600.001. Фиксаторы крепят к блоку двумя винтами B.M4-6gx12.58.019 ГОСТ 17473-80.

Порядок монтажа

Монтаж БПДД-RS-М проводить в следующей последовательности.

- 1) Установить блок в месте, определенном проектным решением и удобном для технического обслуживания с учетом следующих требований:
- при использовании воздушных участков ИПЛ расстояние до блока грозозащиты ГР-1 должно быть не более 20 м.
- 2) Выполнить монтаж соединительного кабеля ИПЛ между БПДД-RS-M и блоком грозозащиты ГР-1 (при использовании воздушных участков ИПЛ) или между БПДД-RS-M и клеммно-соединительной коробкой.

Примечание - Расстояние между параллельно проложенным кабелем ИПЛ и электропроводками электропитания или освещения должно быть не менее 0,5 м. Радиус изгиба кабеля ИПЛ должен быть не менее 10 наружных диаметров кабеля. Кабель соединителя крепится к строительным конструкциям при помощи скоб (тонколистовая оцинкованная сталь, пластиковые и т.п.), шаг крепления - не более 300 мм.

3) Подключить кабель интерфейса RS-232 (RS-485) к блоку БПДД-RS-M.

2.3 Подготовка к работе

Перед началом работы необходимо произвести настройку следующих параметров БПДД-RS-M для работы в составе системы:

- адрес блока в интерфейсе COC-95;
- порог приема ИПЛ;
- режима работы последовательного порта (вид интерфейса, скорость передачи, вид протокола).

Настройку проводят при помощи блока диагностики БД или программы RASOS в соответствии с руководством по эксплуатации БД или руководством пользователя программы RASOS и рабочим проектом.

2.4 Включение в работу

Индикацией нормальной работы БПДД-RS-М является периодическое мигание светодиода «СОС-95» в моменты считывания состояния блока. При информационном обмене с внешним устройством периодически мигает светодиод «RS-232/485».

При необходимости, при эксплуатации блока производят настройку порога COC-95 при помощи программы RASOS. Настройку порога методом подбора проводят в случае, если качество связи с контроллером интерфейса COC-95 стало менее 100%.

БПДД-RS-М передает контроллеру интерфейса COC-95 данные о напряжении питания блока.

2.5 Пусконаладочные работы

Общие сведения

Пусконаладочные работы систем на базе интерфейса СОС-95 должны выполняться монтажно-наладочной организацией в соответствии с требованиями СНиП 3.05.06-85, СНиП 3.05.07-85, ПУЭ, руководствами по эксплуатации систем на базе интерфейса СОС-95.

Для проведения пусконаладочных работ заказчик должен:

- согласовать с монтажно-наладочной организацией сроки выполнения работ, предусмотренные в общем графике;
 - обеспечить наличие источников электроснабжения;
 - обеспечить общие условия безопасности труда и производственной санитарии.

До начала монтажных и пусконаладочных работ должны быть проведены индивидуальные испытания (входной контроль) блока БПДД-RS-M.

Входной контроль

Перечень работ по входному контролю блока БПДД-RS-M:

- внешний осмотр, проверка комплектности;
- контроль величины потребляемого тока в режиме ожидания;
- поиск блока по адресу, проверка смены адреса;

- установка режима работы блока;
- проверка номера версии ПО;
- контроль величины потребляемого тока в режиме приемо-передачи;
- поверка электрических параметров интерфейсных сигналов СОС-95;
- контроль качества связи с блоком;
- контроль измерения напряжения питания;
- поверка электрических параметров интерфейсных сигналов RS-232;
- поверка электрических параметров интерфейсных сигналов RS-485;
- контроль качества связи по инерфейсу RS-232;
- контроль качества связи по инерфейсу RS-485;
- проверка работоспособности при изменении напряжения питания.

Для проведения входного контроля БПДД-RS-M требуется контрольно-измерительные приборы и оборудование, приведенное в таблице 6.

Таблица 6

Наименование	Технические требования
Персональный компьютер	Должна быть установлена программа RASOS, свободный СОМ-порт
Блок диагностики БД	ECAH.426474.001
Блок контроля датчиков БКД-М	ECAH.426469.001-01
Мультиметр цифровой	Диапазоны измерение напряжения $0-500 \mathrm{\ B}$, измерения тока $0-0.5 \mathrm{\ A}$, класс точности $2.5 \mathrm{\ C}$
Осциллограф цифровой запоминающий	TDS 1002 Tektronix
Соединитель «БКД-ЭВМ»	Кабель ЭСАТ.685621.076
Соединитель К2	ЭСАТ.685624.096, 1 шт.
Соединитель «БКГД-БПД- RS»	ЭСАТ.685621.079, 1 шт.
Терминатор	ЕСАН.418429.001, 1 шт.
Устройство диагностики БПДД-RS485	ECAH.426474.002

Внешний осмотр, проверка комплектности

Визуально проверить отсутствие механических повреждений корпуса БПДД-RS-M, отсутствие окисления контактов разъемов и кабелей, наличие пломб и маркировки. Визуально проверить комплектность блока на соответствие настоящему руководству по эксплуатации. Сличить заводские номера и дату выпуска, указанные на маркировке блока с данными формуляра.

Контроль величины потребляемого тока в режиме ожидания

Проверку величины потребляемого тока БПДД-RS-M в режиме ожидания проводить в следующей последовательности.

- 1) Подключить приборы и устройства в соответствии с рисунком 7: БКД-М блок контроля БКД-М; Р1 миллиамперметр постоянного тока.
- 2) При помощи амперметра постоянного тока P1 измерить потребляемый блоком ток в режиме ожидания. Все светодиоды на блоке БПДД-RS-М не должны светиться.
- 3) Отключить все внешние цепи от БПДД-RS-M.

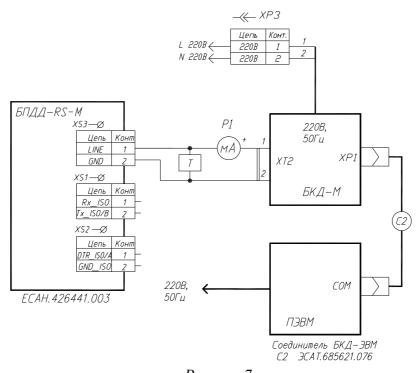


Рисунок 7

БПДД-RS-М считают выдержавшим испытание, если потребляемый ток в режиме ожидания не превышает 4 мА.

Поиск блоки по адресу, смена адреса блока при помощи БД

Поиск БПДД-RS-M по адресу при помощи БД проводить в следующей последовательности.

- 1) Подключить приборы и устройства в соответствии с рисунком $8.\ T$ терминатор, БД блок диагностики.
- 2) Выполнить установку порога приема БД, выбрав пункт меню «Порог COC-95», должно быть видно одно устройство.
- 3) Выполнить поиск блока, выбрав пункт меню «Поиск устройств» на БД.

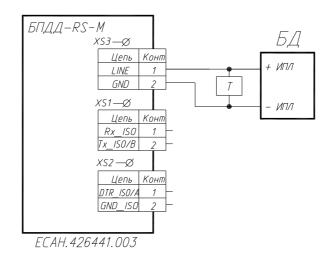


Рисунок 8

- 4) Убедиться в том, что найдено устройство «БПДД» с адресом в диапазоне от 1 до 255.
- 5) Для изменения адреса блока выбрать пункт меню «Изменить адрес» и установить новый требуемый адрес блока в соответствии с рабочим проектом системы, в которой используется БПДД-RS-M.
- 6) Снова выполнить поиск блока и убедиться в правильности установки адреса.
- 7) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если обеспечивается поиск по адресу и смена адреса при помощи БД.

Установка режима работы блока при помощи БД

Настройку параметров конфигурации БПДД-RS-М при помощи БД проводить в следующей последовательности.

- 1) Подключить приборы и устройства в соответствии с рисунком 8.
- 2) Выполнить установку порога приема БД, выбрав пункт меню «Порог COC-95», должно быть видно одно устройство.
- 3) Выполнить поиск блока, выбрав пункт меню «Поиск устройств» на БД. Убедиться в том, что по завершении поиска БПДД-RS-М внесен в таблицу оборудования БД.
- 4) Выбрать пункт меню БД «Тесты датчиков», «Аппаратные настройки» и установить следующие параметры конфигурации БПДД-RS-М:
 - «Интерфейс» RS-232;
 - «Инвертировать DE» Да;
 - «7-битовый обмен» Нет.
- 5) Выбрать пункт меню БД «Тесты датчиков», «Установка параметров» и установить следующие параметры конфигурации БПДД-RS-М:
 - «Скорость» − 19200;
 - «Квитирование» нет;

- «Четность» None.
- 6) Выбрать пункт меню БД «Тесты датчиков», «Установка порога» и установить:
 - «Порог» 0.
- 7) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если обеспечивается настройка параметров конфигурации.

Поиск блока по адресу, смена адреса блока при помощи RASOS

Поиск БПДД-RS-M по адресу при помощи ПО RASOS проводить в следующей последовательности.

1) Подключить приборы и устройства в соответствии с рисунком 9.

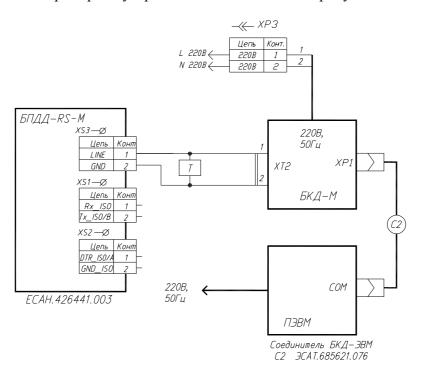


Рисунок 9

2) Подготовить ПЭВМ к работе, загрузить ПО RASOS, создать новый объект БКД-М, установить параметры подсоединения (рисунок 10).

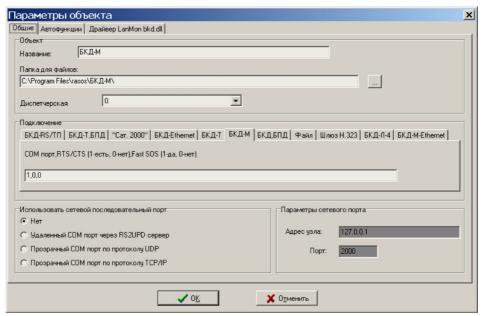


Рисунок 10

3) В программе RASOS произвести подключение к БКД-М (рисунок 11). Проверить наличие сообщения «БКД подключен».

Рисунок 11

4) Проверить качество связи ПЭВМ с БКД-М по интерфейсу RS-232, выполнив команду «БКД\Проверка связи». Качество должно быть 100% (рисунок 12).

Рисунок 12

5) Установить порог приема БКД-М равным 30, выбрав пункт меню «БКД\Прочитать порог СОС-95». Ввести подтверждение записи порога в БКД-М (рисунок 13). Проверить появление сообщения «Порог СОС-95 записан успешно».

Рисунок 13

- 6) Выполнить поиск блока, выбрав пункт меню «БКД\Поиск устройств».
- 7) По окончании поиска проверить наличие «БПДД» в таблице устройств (рисунок 13).

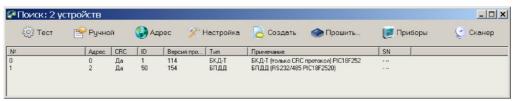


Рисунок 14

- 8) Убедиться в том, что найдено устройство типа «БПДД» с адресом в диапазоне от 1 до 255.
- 9) Для изменения адреса блока выбрать пункт меню «Адрес» в окне «Поиск» и установить новый требуемый адрес блока в соответствии с рабочим проектом системы, в которой используется БПДД-RS-M (рисунок 15).

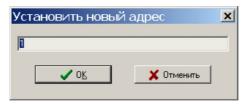


Рисунок 15

- 10) Закрыть окно «Поиск» и вновь выполнить поиск блока и убедиться в правильности установки адреса.
- 11) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если обеспечивается поиск по адресу и смена адреса блока при помощи ПО RASOS.

Установка режима работы блока при помощи RASOS

Настройку параметров конфигурации БПДД-RS-М при помощи ПО RASOS проводить в следующей последовательности.

- 1) Выполнить действия π . 1) 8) раздела «Поиск блока по адресу, смена адреса блока при помощи RASOS» настоящего РЭ.
- 2) Выбрать в таблице устройств блок «БПДД». В окне «Поиск» выбрать команду «Тест», затем вкладку «Настройка» и установить следующие параметры конфигурации БПДД-RS-М (рисунок 16):

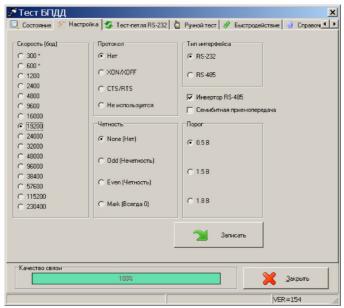


Рисунок 16

- «Скорость» − 19200;
- «Протокол» нет;
- «Четность» нет;
- «Тип интерфейса» RS-232;
- «Инвертор RS-485» да;
- «Семибитная приемопередача» нет;
- «Порог» − 0,5В.
- 3) Ввести команду «Записать». Проверить появление сообщения «Параметры записаны».
- 4) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если обеспечивается настройка параметров конфигурации.

Проверка номера версии ПО при помощи БД

Проверку номера версии ПО блока БПДД-RS-M при помощи БД проводить в следующей последовательности.

- 1) Подключить приборы и устройства в соответствии с рисунком 8.
- 2) Выполнить установку порога приема БД, выбрав пункт меню «Порог COC-95», должно быть видно одно устройство.
- 3) Выполнить поиск блока, выбрав пункт меню «Поиск устройств» на БД. Убедиться в том, что по завершении поиска БПДД внесен в таблицу оборудования БД.
- 4) Выбрать пункт меню БД «Версии прошивок» и проверить:
 - «id (блока)» идентификационный номер блока;

«Прошивка» – номер версии ПО.

Соответствие идентификационных номеров и версий ПО блока БПДД-RS-M приведено в таблице 7.

Таблица 7

Идентификационный но- мер блока	Номер версии ПО	Контроль CRC	Примечание
154	50	+	

5) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-M считают выдержавшим испытание, если номер версии ПО соответствует идентификационному номеру.

Проверка номера версии ПО блока при помощи RASOS

Проверку номера версии ПО блока БПДД-RS-М при помощи ПО RASOS проводить в следующей последовательности.

- 1) Выполнить действия π . 1) 8) раздела «Поиск блока по адресу, смена адреса блока при помощи RASOS» настоящего РЭ.
- 2) Выбрать в таблице устройств блок «БПДД». В окне «Поиск» в колонке «ID» и «Версия прошивки» проверить соответствие идентификационного номера и номера версии микропрограммы блока в соответствии таблицей 7.
- 3) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если номер версии ПО соответствует идентификационному номеру блока.

Контроль величины потребляемого тока в режиме приемо-передачи

Проверку величины потребляемого тока БПДД-RS-M в режиме приемо-передачи проводить в следующей последовательности.

- 1) Подключить приборы и устройства в соответствии с рисунком 7: БКД-М блок контроля БКД-М; Р1 миллиамперметр постоянного тока.
- 2) Выполнить действия π . 1) 8) раздела «Поиск блока по адресу, смена адреса блока при помощи RASOS» настоящего РЭ.
- 3) Выбрать в таблице устройств блок «БПДД». В окне «Поиск» выбрать команду «Тест», затем вкладку «Состояние».
- 4) При помощи амперметра постоянного тока P1 измерить потребляемый блоком ток в режиме приемо-передачи. Светодиод «СОС-95» на блоке БПДД-RS-М должен периодически мигать.
- 5) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если потребляемый ток в режиме ожидания не превышает 25 мА.

Поверка электрических параметров интерфейсных сигналов СОС-95

Поверку электрических параметров интерфейсных сигналов блока БПДД-RS-М проводить в следующей последовательности.

- 1) Подготовить осциллограф к работе в соответствии с эксплуатационной документацией.
- 2) Выполнить действия π . 1) 8) раздела «Поиск блока по адресу, смена адреса блока при помощи RASOS» настоящего РЭ.
- 3) Выбрать в таблице устройств блок «БПДД». В окне «Поиск» выполнить команду «Ручной».
- 4) В открывшемся окне установить следующие параметры (рисунок 17):
 - «ADDR»: (реальный адрес БПДД-RS-M);
 - «CMD»: 255;
 - «Частота опроса устройств»: 800 мсек.

Включить признак «Авто».

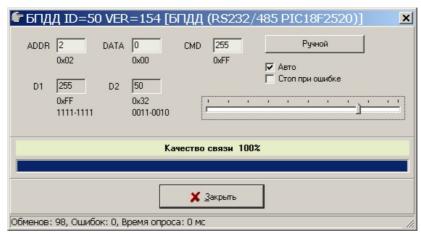


Рисунок 17

- 5) Подключить общий вход осциллограф к выходу «GND» разъема XS3 БПДД-RS-M, сигнальный вход осциллограф к выходу «LINE». При помощи осциллографа наблюдать форму сигнала запроса БКД-М и ответа БПДД-RS-М по интерфейсу СОС-95. Запомнить на экране осциллографа форму сигналов запроса и ответа (рисунок 18).
- 6) Измерить следующие параметры сигнала ответа БПДД-RS-M, которые должны быть:
- длительность импульса $(2\pm0,2)$ мкс, измеряется на уровне 0,5 от амплитуды импульса, фронт импульса не более 0,1 мкс, спад импульса не более 0,1 мкс, фронт и спад измеряется при амплитуде импульса от 0,1 до 0,9;
 - временной интервал логического нуля (27±1) мкс;
 - временной интервал логической единицы (36±1) мкс;
- амплитуда импульса ответа не менее 20 В при постоянной составляющей напряжения 24 В;
 - пауза, формируемая блоком перед выдачей ответного слова, от 200 до 1000 мкс.
 - количество импульсов сигнала ответа 25.

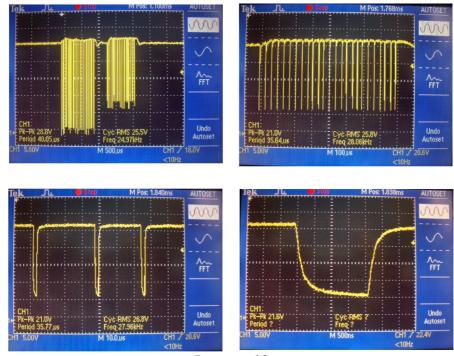


Рисунок 18

7) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считается выдержавшим испытание, если обеспечиваются требуемые значения электрических параметров сигналов интерфейса COC-95.

Контроль качества связи с блоком при помощи БД

Контроль качества связи с БПДД-RS-M при помощи БД проводить в следующей последовательности.

- 1) Подключить приборы и устройства в соответствии с рисунком 8.
- 2) Выполнить установку порога приема БД, выбрав пункт меню «Порог COC-95», должно быть видно одно устройство.
- 3) Выполнить поиск блока, выбрав пункт меню «Поиск устройств» на БД. Убедиться в том, что по завершении поиска БПДД внесен в таблицу оборудования БД.
- 4) Выбрать пункт меню БД «Проверить связь». Проверить качество связи и количество ошибок при обмене, время наблюдения должно быть не менее минуты.
- 5) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если отсутствуют ошибки при обмене данными, а качество связи 100%.

Контроль качества связи с блоком при помощи RASOS

Контроль качества связи с БПДД-RS-M при помощи ПО RASOS проводить в следующей последовательности.

1) Выполнить действия п. 1) - 4) раздела «Поверка электрических параметров интерфейсных сигналов COC-95» настоящего РЭ.

- 2) По истечении времени, необходимом для формирования не менее 1000 информационных обменов, проверить отсутствие ошибок в нижней строке окна, качество связи должно быть 100%. Выполнить команду «Закрыть».
- 3) В окне «Поиск» выбрать команду «Сканер». В открывшемся окне установить признак «Нормальный» и ввести команду «Старт» (рисунок 19). Дождаться окончания сканирования. Проверить, что при пороге от «минус 27» до «плюс 255» качество связи 100%.

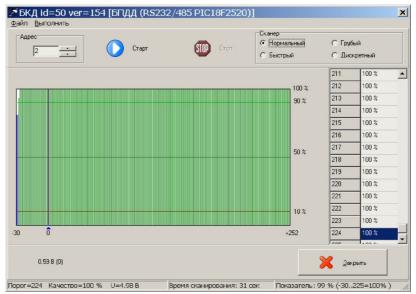


Рисунок 19

4) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если отсутствуют ошибки при обмене данными, а качество связи 100%.

Контроль измерения напряжения питания при помощи БД

Проверку схемы контроля напряжения питания БПДД-RS-М проводить при помощи БД в следующей последовательности.

- 1) Подключить приборы и устройства в соответствии с рисунком 8.
- 2) Выполнить установку порога приема БД, выбрав пункт меню «Порог COC-95», должно быть видно одно устройство.
- 3) Выполнить поиск блока, выбрав пункт меню «Поиск устройств» на БД. Убедиться в том, что по завершении поиска БПДД внесен в таблицу оборудования БД.
- 4) Выбрать пункт меню «U блоков» и проверить отображение значения напряжения питания U.
- 5) При помощи вольтметра постоянного тока измерить напряжение на входе XS3 блока.
- 6) Вычислить разность между показаниями вольтметра и БД, которая должна быть не более ± 2 В.
- 7) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если обеспечивается измерение напряжения питания.

Контроль измерения напряжения питания при помощи RASOS

Проверку схемы контроля напряжения питания БПДД-RS-М проводить при помощи ПО RASOS в следующей последовательности.

- 1) Выполнить действия π . 1) 8) раздела «Поиск блока по адресу, смена адреса блока при помощи RASOS» настоящего РЭ.
- 2) Выбрать в таблице устройств блок «БПДД». В окне «Поиск» выбрать команду «Тест», затем вкладку «Состояние» и проверить отображение значения напряжения питания «Напряжение в СОС-95» (рисунок 20).

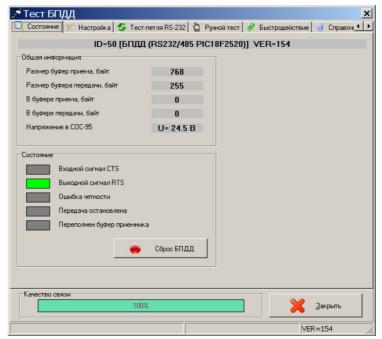


Рисунок 20

- 3) При помощи вольтметра постоянного тока измерить напряжение на входе XT1 блока.
- 4) Вычислить разность между показаниями вольтметра и БД, которая должна быть не более ±2 В.
- 5) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-M считают выдержавшим испытание, если обеспечивается измерение напряжения питания.

Поверка электрических параметров интерфейсных сигналов RS-232

Проверку электрических параметров интерфейсных сигналов RS-232 при помощи RASOS проводить в следующей последовательности.

- 1) Подготовить осциллограф к работе в соответствии с эксплуатационной документацией.
- 2) Выполнить действия π . 1) 8) раздела «Поиск блока по адресу, смена адреса блока при помощи RASOS» настоящего РЭ.

- 3) Выбрать в таблице устройств блок «БПДД». В окне «Поиск» выбрать команду «Тест», затем вкладку «Тест-петля RS-232».
- 4) Соединить контакты 1 и 2 разъема XS1. Проверить появление сообщения «ОК» (рисунок 21). Светодиод «RS-232» должен периодически мигать.

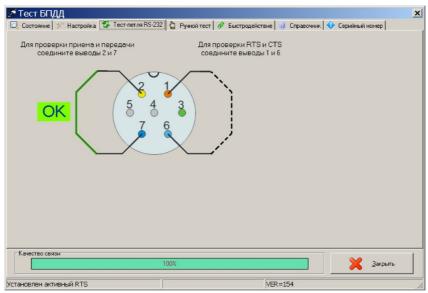


Рисунок 21

5) Подключить общий вход осциллограф к контакту 2 разъема XS2, сигнальный вход осциллограф к контакту 1 разъема XS1. При помощи осциллографа наблюдать форму контрольного сигнала в интерфейсе RS-232. Запомнить на экране осциллографа форму сигнала (рисунок 22).

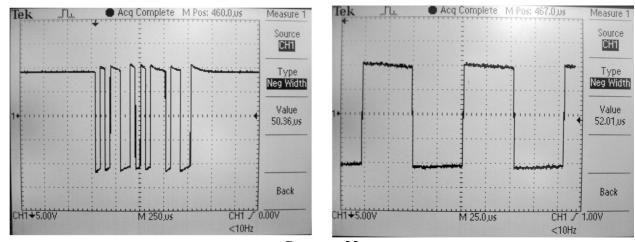


Рисунок 22

Измерить следующие параметры контрольного сигнала, которые должны быть:

- длительность одного бита 52 мкс \pm 10%, измеряется на уровне 0,5 от амплитуды импульса, фронт импульса не более 2 мкс, спад импульса не более 2 мкс, фронт и спад измеряется при амплитуде импульса от 0,1 до 0,9;
 - размах импульса не менее 22 В.
- 6) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если обеспечиваются требуемые значения электрических параметров сигналов интерфейса RS-232.

Поверка электрических параметров интерфейсных сигналов RS-485

Проверку электрических параметров интерфейсных сигналов RS-485 блока БПДД-RS-M при помощи RASOS проводить в следующей последовательности.

- 1) Подготовить осциллограф к работе в соответствии с эксплуатационной документацией.
- 2) Выполнить действия π . 1) 8) раздела «Поиск блока по адресу, смена адреса блока при помощи RASOS» настоящего РЭ.
- 3) Выбрать в таблице устройств блок «БПДД». В окне «Поиск» выбрать команду «Тест», затем вкладку «Настройка». Установить тип интерфейса «RS-485». Выполнить команду «Записать». Проверить появление сообщения «Параметры записаны».
- 4) Выбрать в таблице устройств блок «БПДД». В окне «Поиск» выбрать команду «Тест», затем вкладку «Тест-петля RS-485». Выполнить команду «Включить» (рисунок 23). Проверить появление ссобщения «ОК» на зеленом фоне.

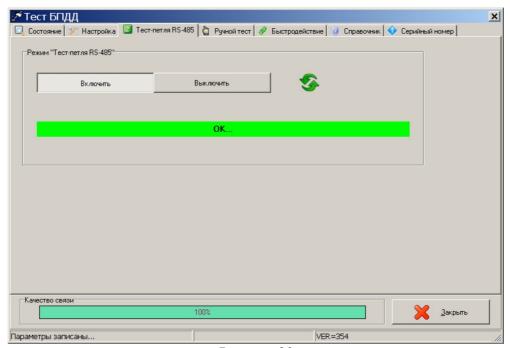


Рисунок 23

5) Подключить общий вход осциллограф к контакту 2 разъема XS1, сигнальный вход осциллограф к контакту 1 разъема XS2. При помощи осциллографа наблюдать форму контрольного сигнала в интерфейсе RS-485. Запомнить на экране осциллографа форму сигнала (рисунок 24).

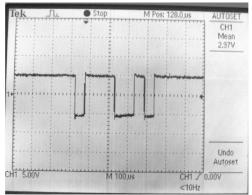


Рисунок 24

Измерить следующие параметры контрольного сигнала, которые должны быть:

- длительность одного бита 52 мкс \pm 10%, измеряется на уровне 0,5 от амплитуды импульса, фронт импульса не более 200 нс, спад импульса не более 200 нс, фронт и спад измеряется при амплитуде импульса от 0,1 до 0,9;
 - размах импульса не менее 10 В.

БПДД-RS-М считают выдержавшим испытание, если обеспечиваются требуемые значения электрических параметров сигналов интерфейса RS-485.

Контроль качества связи по инерфейсу RS-232 при помощи БД

Контроль качества связи по интерфейсу RS-232 при помощи БД проводить в следующей последовательности.

1) Подключить приборы и устройства в соответствии с рисунком 25. Т – терминатор; БД – блок диагностики.

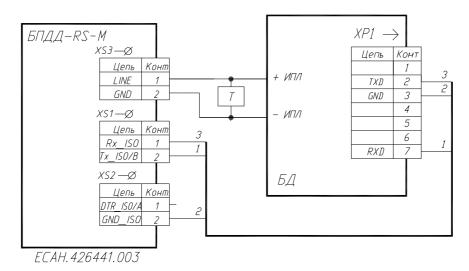


Рисунок 25

- 2) Выполнить установку порога приема БД, выбрав пункт меню «Порог COC-95», должно быть видны два устройства.
- 3) Выполнить поиск блока, выбрав пункт меню «Поиск устройств» на БД. Убедиться в том, что по завершении поиска БПДД внесен в таблицу оборудования БД.

- 4) Выбрать пункт меню БД «Тесты датчиков» и выбрать БПДД. Выбрать пункт «Тесты» и «Проверка передачи». Проверить нулевые значения счетчиков «SOS», «Ошибок», «Потеряно» в режиме передачи данных БПДД к БД по интерфейсу RS-232, время наблюдения должно быть не менее минуты.
- 5) Выбрать пункт меню БД «Тесты датчиков» и выбрать БПДД. Выбрать пункт «Тесты» и «Проверка приема». Проверить нулевые значения счетчиков «SOS», «Ошибок», «Потеряно» в режиме приема данных БПДД от БД по интерфейсу RS-232, время наблюдения должно быть не менее минуты.
- 6) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если отсутствуют ошибки при обмене данными по интерфейсу RS-232.

Контроль качества связи по инерфейсу RS-485 при помощи БД

Контроль качества связи по интерфейсу RS-485 при помощи БД проводить в следующей последовательности.

1) Подключить приборы и устройства в соответствии с рисунком 25. Т – терминатор; БД – блок диагностики.

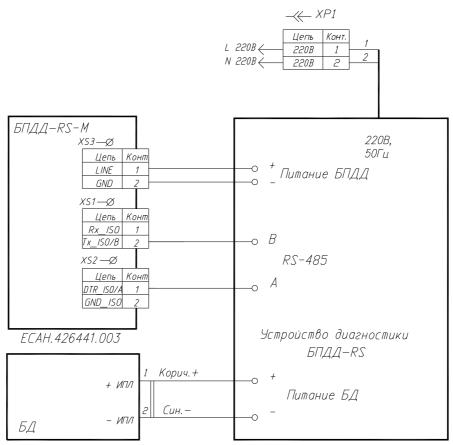


Рисунок 26

- 2) Выполнить установку порога приема БД, выбрав пункт меню «Порог COC-95», должно быть видны два устройства.
- 3) Выполнить поиск блока, выбрав пункт меню «Поиск устройств» на БД. Убедиться в том, что по завершении поиска БП485 внесен в таблицу оборудования БД.

- 4) Выбрать пункт меню БД «Тесты датчиков» и выбрать БП485. Выбрать пункт «Тесты» и «Тест через стенд». Проверить нулевые значения счетчиков «Ошибок», «Потерь», время наблюдения должно быть не менее минуты.
- 5) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если отсутствуют ошибки при обмене данными по интерфейсу RS-485.

Проверка работоспособности при изменении напряжения питания

Проверку работоспособности БПДД-RS-М при изменении напряжения сети питания проводить в следующей последовательности.

- 1) Подключить приборы и устройства в соответствии с рисунком 9. Использовать блок БКД-М с функцией ручной установки значения выходного напряжения в ИПЛ.
- 2) Установить выходное напряжение БКД-М равным 14B±5%, контролируя значение напряжения по вольтметру.
- 3) Проверить качество связи с БПДД-RS-M по методике пункта «Контроль качества связи с блоком при помощи RASOS» настоящего руководства.
- 4) Установить выходное напряжение БКД-М равным 30В±5%, контролируя значение напряжения по вольтметру.
- 5) Проверить качество связи с БПДД-RS-M по методике пункта «Контроль качества связи с блоком при помощи RASOS» настоящего руководства.
- 6) Отключить все внешние цепи от БПДД-RS-M.

БПДД-RS-М считают выдержавшим испытание, если качество связи 100%.

3 Техническое обслуживание

3.1 Общие указания

Для обеспечения надежной работы блока БПДД-RS-М и поддержания его постоянной исправности в течение всего периода использования по назначению, блок подвергают периодическому техническому обслуживанию (ТО) один раз в месяц и один раз в год, независимо от его технического состояния на момент проведения ТО. При замене отказавших блоков системы провести ТО в объеме ежегодного. ТО проводится сотрудниками обслуживающей организации по планово-предупредительной системе.

3.2 Меры безопасности

При выполнении технического обслуживания БПДД-RS-М необходимо соблюдать меры безопасности, указанные в п. 2.1 настоящего РЭ.

3.3 Порядок технического обслуживания

Порядок технического обслуживания БПДД-RS-M должен соответствовать таблице 8.

Таблица 8

Перечень работ	речень работ Период выполнения работ	
	ежеме-	ежегод-
	сячно	НО
Проверка состояния корпуса блока на отсутствие механических повреждений и сохранности пломб. Проверка правильности и надежности подключения разъемов. Проверка состояния маркировки. Очистка, при необходимости, от пыли и грязи.	да	да
Проверка работоспособности	да	да
Проверка основных технических характеристик	нет	да

По результатам эксплуатации БПДД-RS-М в сложных условиях, например, при наличии пыли, грязи, большой вероятности протеканий воды, риске механического повреждения и т.п., допускается уменьшение периода проверок.

Проверка работоспособности

Рекомендуется ежесуточно оценивать техническое состояние блока БПДД-RS-M по записям в электронном журнале программного комплекса системы, управляющей работой БПДД-RS-M:

- наличие сбоев в работе, «зависания» блока;
- снижение качества связи с контроллером СОС-95;
- снижение качества связи с внешним устройством, подключенным по интерфейсу RS-232 или RS-485;
 - несоответствие измеренного напряжения ИПЛ заданному рабочему диапазону.

Проверка основных технических характеристик

Проверка основных технических характеристик блока БПДД-RS-М производится в объеме и по методике индивидуальной настройки, изложенной выше.

В случае обнаружения несоответствия БПДД-RS-M заданным требованиям при проведении проверок, неисправный блок должен быть отправлен в ремонт.

4 Текущий ремонт

Текущий ремонт выполняется для восстановления работоспособности БПДД-RS-M силами эксплуатирующей организации.

Перед поиском неисправности и ремонтом БПДД-RS-М необходимо ознакомиться с электрической схемой подключения, принципом действия и работой системы в целом и ее составных частей.

При текущем ремонте необходимо соблюдать меры безопасности, изложенные в разделе 2.1.

Измерительные приборы и оборудование, подлежащие заземлению, должны быть заземлены.

Подключение ИПЛ, RS-232 (RS-485) к блоку БПДД-RS-М при ремонте производить только при выключенном электропитании блока.

Описания последствий наиболее вероятных отказов, встречающихся при эксплуатации блока, возможные причины и способы их устранения приведены в таблице 9.

Таблица 9

Описания последствий отказов	Возможные причины	Указания по устранению по- следствий отказов
Отсутствует информаци- онный обмен блоком по интерфейсу СОС-95, низ- кое качество связи по СОС-95	Напряжение питания бло- ка ниже допустимого. Контроллер СОС-95 не	Измерить напряжение в ИПЛ в месте подключения блока, выявить и устранить неисправность ИПЛ.
COC-93	формирует запросы по ИПЛ для блока или не принимает его ответы.	Проверить значения настроечных параметров контролера COC-95.
	Неправильно установлен порог СОС-95.	Подобрать порог СОС-95.
	Отсутствуют терминаторы на концах луча ИПЛ.	Установить терминаторы на концы луча ИПЛ.
	Совпадение адресов в луче ИПЛ	Проверить луч ИПЛ на на- личие совпадения адресов, сменить адрес устройства.
	Неисправен блок.	Отправить блок в ремонт.
Отсутствует информаци- онный обмен по интерфей-	Обрыв или замыкание линии связи интерфейса.	Проверить линию связи и разъемы интерфейса.
су RS-232 (RS-485), низ- кое качество связи по RS- 232 (RS-485), светодиод «Обмен RS-232/485» не светится	Не верно установлены скорость обмена и вид протокола RS-232.	Установить требуемые скорость обмена и вид протокола RS-232.
	Неисправно внешнее устройство.	Заменить внешнее устройство на исправное.
	Неисправен блок.	Отправить блок в ремонт.
Ошибка измерения напряжения ИПЛ	Неисправен блок.	Отправить блок в ремонт.

5 Хранение

БПДД-RS-М следует хранить в упакованном виде (допускается хранение в транспортной таре в течение гарантийного срока хранения) в отапливаемых помещениях группы 1 (Л) по ГОСТ 15150 при отсутствии в воздухе кислотных, щелочных и других агрессивных примесей.

6 Транспортирование

6.1 Указания по транспортировке

БПДД-RS-М в упакованном виде следует транспортировать в крытых транспортных средствах любым видом транспорта в соответствии с правилами перевозки грузов, действующими на соответствующем виде транспорта. При транспортировании воздушным транспортом блоки в упаковке должны размещаться в отапливаемых герметизированных отсеках.

6.2 Механические воздействия и климатические условия

Механические воздействия и климатические условия при транспортировании БПДД-RS-М в упаковке должны соответствовать следующим требованиям:

- транспортная тряска с ускорением до 30 м/ c^2 при частоте ударов от 10 до 120 Гц, или легкие (Л) условия транспортирования по ГОСТ 23170-78;
 - воздействие температуры от минус 50 до плюс 50 °C,
 - воздействие влажности до 98 % при 35 °С (без прямого воздействия осадков).

6.3 Меры предосторожности

При транспортировании БПДД-RS-М необходимо соблюдать меры предосторожности с учетом предупредительных надписей на транспортных ящиках. Расстановка и крепление ящиков в транспортных средствах должны обеспечивать их устойчивое положение, исключать возможность смещения ящиков и соударения.