

РАДИОКОНЦЕНТРАТОР БРК

Блок БРК-Э 05 Руководство по эксплуатации ECAH.426441.013РЭ

Редакция 103

Содержание

1	Назначение	3
	Основные технические характеристики	
	Выполняемые функции	
4	Устройство и работа	4
5	Описание конструкции	6
6	Маркировка и пломбирование	7
7	Упаковка	8
8	Комплектность	8
9	Указания мер безопасности	8
10	Порядок монтажа	9
11	Подготовка к работе	11
12	Порядок работы	25
13	Техническое обслуживание	29
14	Текущий ремонт	32
15	Транспортирование	33
16	Хранение	33

1 Назначение

Ретранслятор БРК-Э 05 (далее - ретранслятор) предназначен для приёма, усиления и дальнейшей передачи информационных посылок радиоустройств на частоте 433 МГц от одного промежуточного или конечного пункта к другому. Питание ретранслятора осуществляется от солнечной батареи. Ретранслятор устанавливается на промежуточном пункте радиоканала системы.

Ретранслятор применяются в составе автоматизированных измерительно-информационных систем коммерческого учета воды, газа, систем диспетчерского контроля, телемеханики на объектах различных отраслей промышленности и жилищно-коммунального комплекса. Внешний вид ретранслятора показан на рисунке 1.

Рисунок 1 - Внешний вид ретранслятора БРК-Э 05

Условия эксплуатации ретранслятора:

- температура окружающего воздуха (-40 ... +60) °С;
- относительная влажность окружающего воздуха до 95 % при 25 °C;
- атмосферное давление (84 106) кПа.

2 Основные технические характеристики

Основные технические характеристики ретранслятора БРК-Э 05 приведены в таблице 1.

Таблица 1 - Основные технические характеристики

	Наименование параметра	Значение
1.	Емкость приемно-передающего буфера радиопосылок	50
2.	Типовая дальность действия, м	до 2000
3.	Типовое количество зон ретрансляции	10
4.	Рабочая частота, МГц	433,92
5.	Максимальная выходная мощность радиопередатчика, мВт	10
6.	Максимальная чувствительность радиоприемника, дБм	-112

Наименование параметра	Значение
7. Рабочий диапазон напряжения питания, В	2,7 3,7
8. Потребляемый ток, мА, не более	5
9. Степень защиты оболочки по ГОСТ 14254-96	
10. Габаритные размеры, мм, не более	170x382x250
11. Масса, кг, не более	5
12. Средняя наработка на отказ, ч, не менее	30000
13. Средний срок службы, лет 12	

Примечание

- 1. Дальность действия ретранслятора очень сильно зависит от выбора места его установки, наличия экранирующих поверхностей, уровня эфирных шумов, расположения внутри или вне здания и т.п.
- 2. Тип модуляции сигнала частотная манипуляция (FSK).

3 Выполняемые функции

Ретранслятор обеспечивает выполнение следующих функций:

- автоматическое определение зоны ретрансляции и конфигурирование сети ретрансляции;
- прием, усиление и дальнейшую передачу по радиоканалу информационных посылок от одного промежуточного или конечного пункта к другому;
- электронную подпись передаваемых и принимаемых данных для защиты от имитации на установленной радиочастоте;
- контроль напряжения солнечной батареи;
- измерение уровня радиосигнала при приеме радиопакета данных;
- установку настроечных параметров.

Ретранслятор обеспечивает установку следующих настроечных параметров:

- установку рабочей частоты (433,05...434,79) МГц и девиации частоты (15...240) кГц приемо-передатчика;
- настройку мощности передатчика (-21...0) дБ;
- настройку коэффициент усиления приемника (-20...-6) дБ;
- установку ширины полосы пропускания приемника (67...400) кГц;
- установку идентификатора (пароля) при выполнении радиообменов данными.

4 Устройство и работа

Структурная схема ретранслятора представлена на рисунке 2.

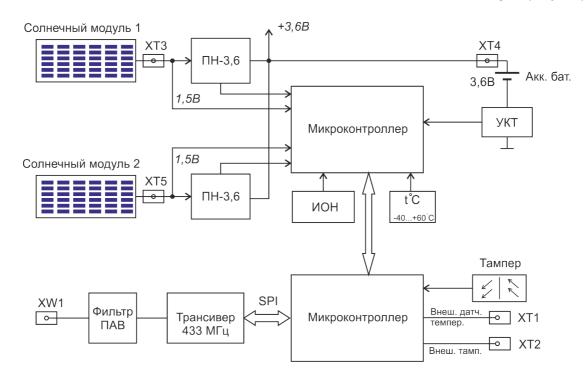


Рисунок 2 - Структурная схема ретранслятора БРК-Э 05

Ретранслятор состоит из следующих функциональных устройств:

- солнечных модулей (внешние);
- преобразователи напряжения;
- трансивер диапазона 433 МГц;
- устройства контроля тока;
- микроконтроллера.

Электропитание ретранслятора осуществляется от встроенной аккумуляторной батареи напряжением 3,6 В. Солнечные модули предназначены для заряда аккумуляторной батареи в течение светлого времени суток. Они формируют напряжение +1,5В, которое поступает на повышающий преобразователь напряжения, состоящий из ключевого транзистора, работающего под управлением микроконтроллера, источника опорного напряжения, устройства контроля тока заряда аккумуляторной батареи. Преобразователь напряжения формирует напряжение +3,6 В для питания схемы. Микроконтроллер так же считывает значение температуры воздуха внутри корпуса из интегрального датчика температуры.

Трансивер предназначен для приема и передачи ретранслируемой информации по радиоканалу на частоте (433,05 — 434,79) МГц на скорости до 200 кбит/с. Используется помехоустойчивая частотная манипуляция несущей частоты сигналами лог. 1 и лог. 0 с девиацией частоты от 33 до 200 кГц при постоянной мощности сигнала до 10 мВт, имеется возможность электронной регулировки усиления передатчика, чувствительности и полосы пропускания приемника. Выходной каскад трансивера подключается к фильтру на поверхностных волнах, предназначенному для подавления излучения на высших гармониках. К разъему XW1 подключается внешняя штыревая полуволновая антенна 433 МГц, с Ј-образным согласованием, имеет круговую диаграмму направленности в горизонтальной плоскости. Дальность действия ретранслятора достигает 2 км в условиях открытого пространства и зависит от многих факторов, таких как уровень фона электромагнитных помех, места расположения и проч.

Трансивер работает под управлением основного микроконтроллера: принимает радио-

посылки от точек сбора данных и сохраняет во внутреннем промежуточном буфере. Далее, в соответствии с определенным алгоритмом микроконтроллер добавляет к принятым сообщениям дополнительную информацию (свой адрес) и пересылает следующему ретранслятору. Прием данных ретранслятором от точек сбора данных является негарантированным, т.к. подтверждение ретранслятором о приеме сообщения не выполняется.

Основной микроконтроллер также опрашивает встроенный оптоэлектронный датчик (тампер) снятия крышки корпуса, дополнительный внешний тампер и датчик температуры 18S20.

Наличие электронной подписи как для отсылаемых сообщений, так и для приходящих радиопакетов, позволяет минимизировать риск воздействия на ретранслятор по радиоканалу от действий злоумышленников.

Настройка параметров ретранслятора производится при помощи программы RASOS.

5 Описание конструкции

Корпус ретранслятора состоит из пластмассовой крышки и пластмассового дна. Внутри корпуса расположена электронная плата с клеммными контактами для подключения кабеля солнечного элемента, шлейфа внешних преобразователя температуры и охранного датчика, разъем антенны. Габаритные размеры ретранслятора приведены на рисунке 3.

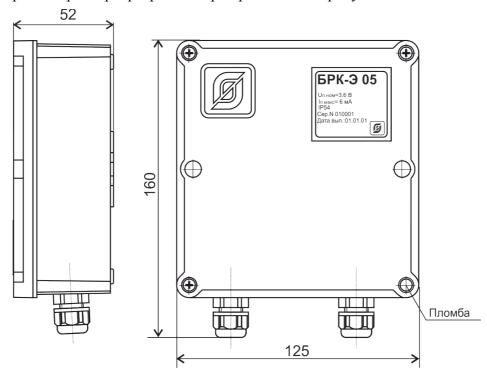


Рисунок 3 - Габаритные размеры БРК-Э 05

На торцевой стороне корпуса расположены герметизированные разъемы для подключения кабеля солнечного модуля, антенны, внешних датчиков (рисунок 4).

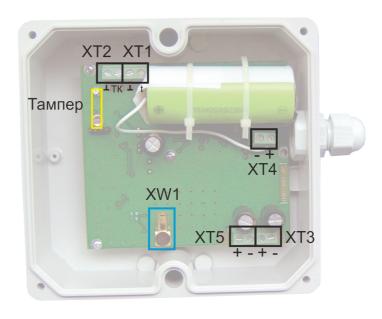


Рисунок 4 - Вид на плату БРК-Э 05

Внутри корпуса на плате установлена аккумуляторная батарея LiPOFe₄ с напряжением 3,3 В емкостью 2300 мАч.

Назначение контактов разъемов ретранслятора приведено в таблице 2.

Таблица 2 - Назначение контактов разъемов ретранслятора

Наименование цепи	Разъем и номер контакта	Обозна- чение цепи	Описание
Датчик	XT1 – 1	t	Вход внешнего датчика температуры 18С20
температуры	XT1 – 2		Общий датчика температуры
Томион	XT2 – 1	ТК	Вход внешнего датчика открытия дверцы шкафа
Тампер	XT2 – 2	上	Общий
Солнечный	XT3 – 1	+Ubat1	Вход для подключения солнечного модуля 1 (плюс)
модуль 1	XT3 – 2	Т	Вход для подключения солнечного модуля 1 (минус)
Аккумуля-	XT4 – 1	+UAcc	Вход для подключения аккумуляторной батареи (плюс)
торная батарея	XT4 – 2	-UAcc	Вход для подключения аккумуляторной батареи (минус)
Солнечный	XT5 – 1	+Ubat2	Вход для подключения солнечного модуля 2 (плюс)
модуль 2	XT5 – 2	Т	Вход для подключения солнечного модуля 2 (минус)
Антенна	XW1		Вход для подключения внешней антенны 433 МГц, 50 Ом

6 Маркировка и пломбирование

Маркировка ретранслятора расположена на корпусе и содержит:

- товарный знак изготовителя;
- условное обозначение изделия;
- заводской номер изделия;
- степень защиты оболочки;

- номинальное напряжение питания « $U_{\Pi U T} = 3,3 \text{ B}$ »;
- максимальный потребляемый ток « $I_{\Pi OTP. MAKC} = 5 \text{ мA}$ »;
- дату выпуска.

Снаружи нанесен заводской номер.

Транспортная маркировка содержит основные, дополнительные, информационные надписи и манипуляционные знаки «Хрупкое, осторожно», «Штабелирование ограничено». Маркировка транспортной тары производится по ГОСТ 14192.

7 Упаковка

Вариант внутренней упаковки соответствует ВУ-5 (без упаковочной бумаги) по ГОСТ 9.014. Эксплуатационная документация герметично упакована в полиэтиленовый пакет в соответствии с ГОСТ 23170. Для транспортирования ретранслятор и документация упакованы в ящик из гофрированного картона по ГОСТ 9142. Ящики содержат средства амортизации и крепления изделий в таре.

8 Комплектность

Состав комплекта поставки ретранслятора приведен в таблице 3.

Таблица 3 - Состав комплекта поставки ретранслятора

Обозначение	Наименование	Кол.	Примечание
ECAH.426441.013	БРК-Э 05	1	
	Солнечный модуль ТСМ-5	1	По требованию заказчика поставляется второй модуль
	Антенна 433 МГц	1	
ECAH.301564.003	Кронштейн	1	
ЕСАН.426441.013ПС	Паспорт	1	
ECAH.426441.013PЭ	Руководство по эксплуатации	1	По требованию заказчика

9 Указания мер безопасности

Внимание! - Не соединять накоротко выводы аккумуляторной батареи.

Запрещается эксплуатация ретранслятора с открытыми крышками. Перед заменой элементов при ремонте следует отключить ретранслятор от элемента питания.

При монтаже, пусконаладочных работах и эксплуатации ретранслятора необходимо руководствоваться действующими на предприятии инструкциями по охране труда, технике безопасности и пожарной безопасности.

Монтажно-наладочные работы следует начинать только после выполнения мероприятий по технике безопасности согласно СНиП 12-03-2001 и СНиП 12-04-2002.

К монтажу допускаются лица изучившие руководство по эксплуатации и прошедшие инструктаж по технике безопасности на рабочем месте.

При работе на высоте необходимо использовать только приставные лестницы и стремянки. При пользовании приставными лестницами обязательно присутствие второго человека. Нижние концы лестницы должны иметь упоры.

Ретранслятор относится к классу III защиты человека от поражения электрическим током по ГОСТ 12.2.007.0.

10 Порядок монтажа

Места установки ретранслятора, в общем случае, должны отвечать следующим требованиям:

- соответствующие условиям эксплуатации;
- отсутствие мощных электромагнитных полей;
- защищенные от грязи, от существенных вибраций;
- удобные для монтажа и обслуживания;
- исключающие механические повреждения и вмешательство в их работу посторонних лиц;
- на расстояние более 1 м от отопительных систем.
 - При монтаже ретранслятора запрещается:
- оставлять блок со снятыми крышками;
- сверление дополнительных проходных отверстий в корпусе блока.
 - Перед монтажом ретранслятора необходимо проверить:
- комплектность согласно эксплуатационной документации;
- отсутствие повреждений корпуса и маркировки;
- соответствие номера блока паспорту.

Подключение внешних цепей

- 1) Снять крышку ретранслятора.
- 2) Подключить кабель питания солнечного модуля к разъему XT3 соблюдая полярность на плате ретранслятора и плотно зафиксировать кабель в гермовводе.
- 3) Подключить кабель антенны 433 МГЦ к разъему XW1 на плате ретранслятора и плотно зафиксировать кабель в гермовводе.
 - 4) Подключить выводы аккумуляторной батареи к разъему ХТ4 соблюдая полярность.
 - 5) Закрепить крышку ретранслятора.

Установка и крепление

Ретранслятор БРК-Э 05 должен быть установлен вертикально в месте, обеспечивающем прямую видимость с блоками с радиоинтерфейсом, например, БРК-К, на максимально возможной высоте (рисунок 5). Вокруг ретранслятора не должно быть близко расположенных массивных предметов из металла и железобетона (не менее 0,5 м). Необходимо обеспечить защиту ретранслятора от прямого попадания молнии.

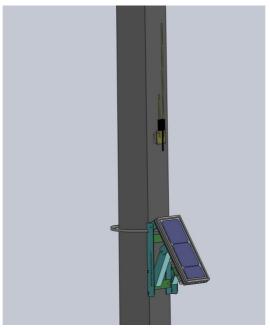


Рисунок 5 - Установка ретранслятора

Установить БРК-Э 054 в кронштейн. Закрепить кронштейн на столбе при помощистяжки. Закрепить антенну 433 МГц при помощи стяжки.

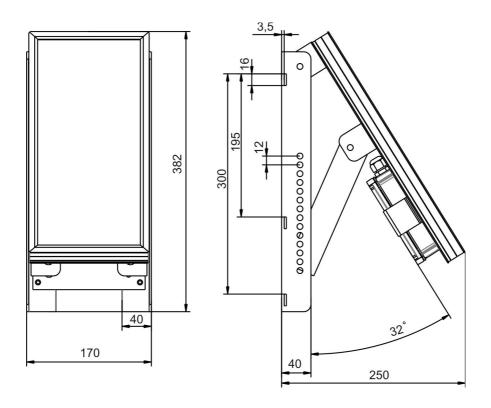


Рисунок 6 - Установка БРК-Э 05 на кронштейне

11 Подготовка к работе

Перед использованием ретранслятора необходимо задать зоны ретрансляции и произвести установку параметров радиоканала при помощи программы RASOS.

Задание зон ретрансляции

1) Подключить к USB-порту ПЭВМ, на которой установлена программа RASOS, радиомодуль USB-RM в соответствии с рисунком 13.

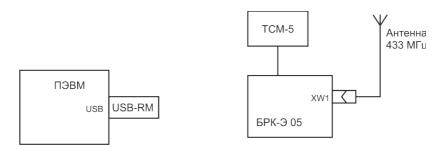


Рисунок 7 - Подключение оборудования для настройки

- 2) Включить и подготовить ПЭВМ к работе в соответствии с эксплуатационной документацией. Загрузить сервисную программу RASOS в ПЭВМ.
- 3) В программе RASOS выбрать режим работы БКД-М. Выполнить поиск мастерустройств (рисунок 8). Подключиться к найденному USB-RM (виртуальному БКД-М) командой «Добавить».

Рисунок 8 - Список найденных мастер-устройств

4) Выбрать команду «Поиск устройств» (рисунок 9).

Рисунок 9 - USB-RM подключен

5) Откроется окно «Поиск» со списком найденных устройств: модуль USB-RM отображается как два виртуальных устройства БКД-М и БРК-Э (рисунок 10).

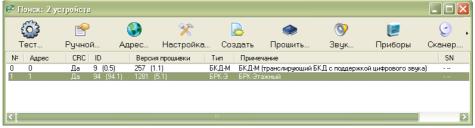


Рисунок 10 - Найден виртуальный БРК-Э

6) Выбрать в списке БРК-Э и нажать на кнопку «Тест». Откроется окно состояния виртуального БРК-Э (рисунок 11).

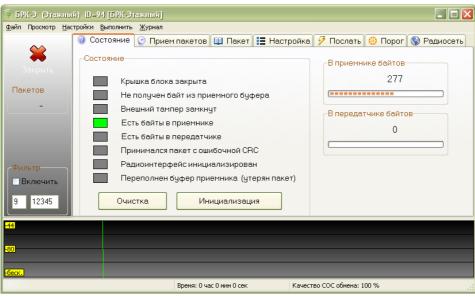


Рисунок 11 - Окно состояния виртуального БРК-Э

7) Выбрать вкладку «Радиосеть» и нажать на кнопку «Определить зоны» для автоматического построения сети ретрансляции и назначения каждому ретранслятору соответствующего номера зоны (рисунок 12).

Рисунок 12 - Назначение зон ретрансляции

Для ретранслятора на вкладке «Радиосеть» доступны следующие действия.

Определить зоны

Произвести автоматическое формирование таблиц ретрансляторов и отображение диаграммы ретрансляции.

✓ Диаграмма радиосети

Разрешить отображение диаграммы ретрансляции.

На диаграмме работоспособный ретранслятор отображается в виде зеленого прямоугольника, содержащего следующую информацию: номер зоны ретрансляции, серийный номер ретранслятора, фоновый уровень радиоэфира, количество доступных ретрансляторов, количество доступных радиоблоков — устройств с радиоинтерфейсом 433 МГц, например, БРК-К, Омега ЭК и др. (рисунок 13).

Рисунок 13 - Информация о ретрансляторе

При наведении указателя «мышки» на зеленое поле отображается: номер радиоблока, уровень сигнала, принятого радиоблоком (рисунок 14).

Рисунок 14 - Дополнительная информация о доступных ретрансляторах

Снятие крышки корпуса БРК-Э 05 отображается на карте (рисунок 15).

Рисунок 15 - Снятие крышки корпуса

Для просмотра информации о доступных других ретрансляторов для выбранного ретранслятора следует на карте нажать на левую кнопку «мышки» на ретрансляторе или мастерустройстве (рисунок 16).

Рисунок 16 - Доступные ретрансляторы

Красной рамкой обозначен выбранный ретранслятор. Зеленой рамкой обозначены доступные ретрансляторы. Уровень принимаемого сигнала от доступных ретрансляторов указан красным шрифтом.

В эфире в каждый момент времен, кроме программы RASOS, которая работает с ретрансляторами, могут одновременно работать программы RASOS, установленные на других компьютерах, т.е. мастер-устройств может быть несколько. Все мастер-устройства, работающие в эфире, отображаются на карте (рисунок 17).

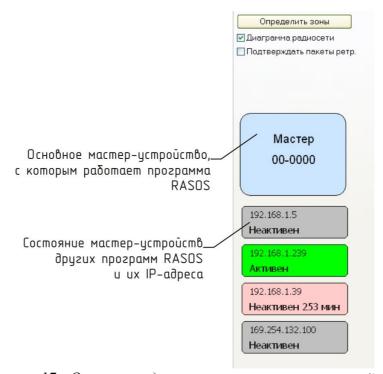


Рисунок 17 - Основное и дополнительные мастер-устройства

Если навести «мышкой» на основное мастер-устройство на карте и нажать правую

кнопку на «мышке», то откроется контекстное меню.

Запрос ретранслятора	- получить таблицу ретрансляторов выбранного устройства (рисунок 18), указать номер ретранслятора и номер зоны;
Определить зоны	- произвести автоматическое формирование таблиц ретрансляторов и отображение диаграммы ретрансляции;
Очистить диаграмму сети	- удалить ретрансляторы с карты;
Отчет по ретрансляторам	- вывести отчет, содержащий таблицы ретрансляторов и уровни принимаемых сигналов (рисунок 19);
Отчет по радиоблокам	- вывести отчет, содержащий информацию о количестве устройств с радиоканалом 433 МГц, доступных для ретранслятора (рисунок 20);
Поиск мастер- устройств	- поиск программ RASOS и опросчиков, работающих в радиоэфире;
Деактивировать мастер-устройство	- запретить работу мастер-устройства с выбранным IP адресом, указать IP-адрес;
Активировать мастер-устройство	- разрешить работу мастер-устройства с выбранным IP адресом, указать IP-адрес;
Запросить мастерустройство	- прочитать имя компьютера мастер-устройства по IP-адресу.

Рисунок 18 - Запрос ретранслятора

```
Ремранслятор 5-18 зона 1
Видно ремрансляторос: 4

1. Pemp. 0-0 - зона 0 - уробень -61 gE
2. Pemp. 5-62 - зона 1 - уробень -70 gE
3. Pemp. 5-13 - зона 1 - уробень -86 gE
4. Pemp. 5-111 - зона 1 - уробень -86 gE

Pempaнслятор: 5-14 зона 1
Видно ремрансляторов: 4

1. Pemp. 0-0 - зона 0 - уробень -69 gE
2. Pemp. 5-62 - зона 1 - уробень -54 gE
3. Pemp. 0-0 - зона 0 - уробень -54 gE
3. Pemp. 5-13 - зона 1 - уробень -51 gE
4. Pemp. 5-111 - зона 1 - уробень -74 gE

Pempaнслятор: 5-13 зона 1
Видно ремрансляторов: 5

1. Pemp. 0-0 - зона 0 - уробень -50 gE
2. Pemp. 5-18 - зона 1 - уробень -74 gE

3. Pemp. 5-18 - зона 1 - уробень -50 gE
5. Pemp. 5-62 - зона 1 - уробень -50 gE
5. Pemp. 5-62 - зона 1 - уробень -50 gE
5. Pemp. 5-62 - зона 1 - уробень -50 gE
5. Pemp. 5-111 - зона 1 - уробень -56 gE
```

Рисунок 19 - Отчет по ретрансляторам

Рисунок 20 - Отчет по радиоблокам

Если навести «мышкой» на другое мастер-устройство на карте и нажать правую кнопку на «мышке», то откроется контекстное меню.

Активировать	- разрешить работу другого мастер-устройства;
Деактивировать	- запретить работу другого мастер-устройства;
Деактивировать на время	- запретить работу другого мастер-устройства в течение заданного времени, ввести временной интервал (3 -254) мин;
Запросить	- прочитать имя компьютера по IP-адресу;
Расширенный запрос	- прочитать наименование программы, являющейся мастер- устройством;
Перестроить зоны ретрансляторов	- запустить процедуру определения зон в другом мастер-устройстве.

Если навести «мышкой» на ретранслятор на карте и нажать правую кнопку на «мышке», то откроется контекстное меню.

To oraporte Rentekerne Menie.				
Изменить серийный номер	- ввод и запись нового серийного номера ретранслятора;			
Изменить настройки радиоинтерфейса	- ввод и запись параметров радиоинтерфейса ретранслятора;			
Изменить настройки	- ввод и запись настроечных параметров режима работы ретранслятора;			
Запросить количество перезапусков	- считать количество перезапусков ретранслятора;			
Начать пробуждение	-			
Запросить состояние	- считать текущие параметры БРК-Э 05;			
Запросить таблицу ретрансляции	- считать таблицу ретрансляции выбранного ретранслятора;			
Удалить	- стереть с карты выбранный ретранслятор;			
Обновление ПО	- перезаписать встроенную программу выбранного ретранслятора;			
Запуск обновления ПО				
Перезапуск ретранслятора				

На вкладке «Прием пакетов» во время выполнения процедуры автоматического

построения зон ретрансляции отображаются пакеты «Формирование зон», «Запрос таблицы ретрансляторов», «Таблица ретрансляторов», поступившие от ретрансляторов (рисунок 21 - 24).

Рисунок 21 - Пример пакета «Формирование зон»

Рисунок 22 - Пример пакета «Запрос таблицы ретрансляторов»

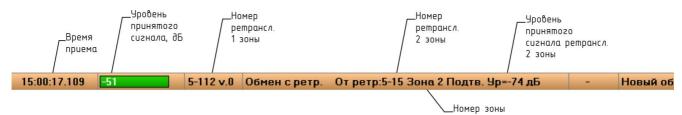


Рисунок 23 - Пример пакета «Обмен с ретранслятором»

Рисунок 24 - Пример пакета «Таблица ретрансляторов»

В пакете «Таблица ретрансляторов» содержится информация о конфигурации зоны ретрансляции выбранного ретранслятора (рисунок 25).

Рисунок 25 - Таблица ретрансляторов

Зона ретранслятора	- номер зоны ретранслятора;
--------------------	-----------------------------

Уровень фона	- уровень фона ретранслятора;
Адрес	- заводской номер ретранслятора или мастера;
Зона	- номер зоны ретрансляции;
Уровень	- уровень принятого сигнала.

Считывание параметров ретранслятора

На карте выбрать ретранслятор и в контекстном меню выбрать команду «Запросить состояние». Через некоторое время будет произведено считывание состояния ретранслятора и на значке ретранслятора появится синий значок «Информация» (рисунок 26).

Рисунок 26 - Прочитана информация БРК-Э 05

При нажатии левой кнопки «мыши» на значке «Информация» откроется окно с параметрами БРК-Э 05 (рисунок 27).

Рисунок 27 - Параметры БРК-Э 05

Версия ПО	- номер версии встроенной программы;	
Заряд АКБ	- величина заряда аккумуляторной батареи (100 % - полностью заряжена);	
Напряжение АКБ	- напряжение аккумуляторной батареи, В;	
Ток через АКБ	- ток аккумуляторной батареи, мА (отрицательное значение — идет разряд);	
Температура АКБ	- температура воздуха внутри корпуса, °С;	
Напр. на входе 1	- напряжение питания от солнечного модуля 1, В;	
Напр. на входе 2	- напряжение питания от солнечного модуля 2, В;	
Канал 1	- состояние солнечного модуля 1 (вкл., выкл.);	
Канал 2	ал 2 - состояние солнечного модуля 2 (вкл., выкл.).	

Настройка радиоканала ретранслятора

1) Открыть вкладку «Прием пакетов» и дождаться приема радиопакета от ретранслятора, для которого требуется произвести настройку параметров (рисунок 28).

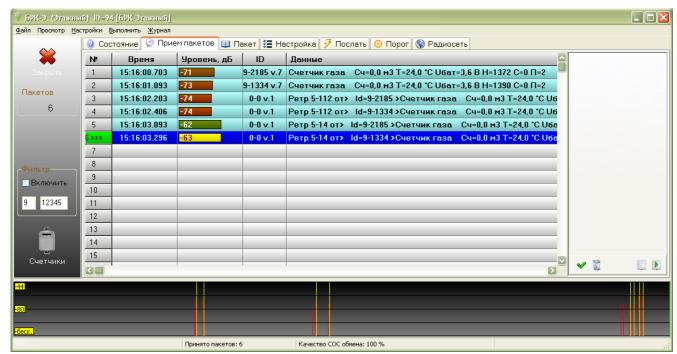


Рисунок 28 - Прием радиопакетов модулем USB-433

Принятый пакет, который был сформирован ретранслятором в процессе ретрансляции сигналов удаленного устройства, начинается с обозначения «Ретр» и показан на рисунке 29.



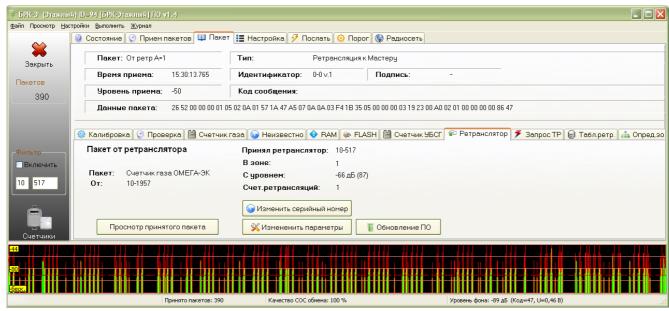
Рисунок 29 - Пример радиопакета ретранслятора, полученного от удаленного устройства

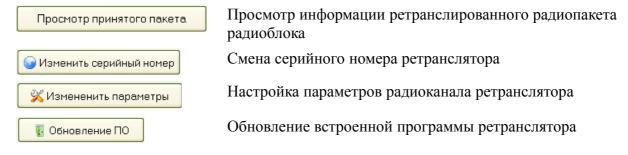
2) Выбрать радиопакет (отобразиться темным фоном) настраиваемого ретранслятора и перейти на вкладку «Пакет» (рисунок 30).

Общая информация о принятом радиопакете:

Пакет	- название объекта-приемника, от которого поступил пакет;
Время принятия	- ременная метка прихода радиопакета (час, мину, секунда, доля секунды);
Уровень приема	- уровень радиосигнала принятого радиопакета в относительных единицах;
Tun	- тип принятого радиопакета («Ретрансляция к мастеру»);
Идентификатор	- индивидуальный номер мастера (id);
Код сообщения	- контрольный код, подтверждающий достоверность радиопакета;

Данные пакета - данные радиопакета в шестнадцатеричной форме (20 слов).




Рисунок 30 - Просмотр информации радиопакета ретранслятора

3) Принятый пакет от ретранслятора на вкладке «Ретранслятор» содержит следующую информацию:

Пакет	- тип устройства - источника принятого радиопакета;
Om	- номер устройства - источника принятого радиопакета;
Принял ретранслятор	- номер ретранслятора, принявшего радиопакет;
В зоне	- номер зоны ретрансляции, где расположен этот ретранслятор;
С уровнем	- уровень принятого сигнала;
Счет. ретрансляций	- количество ретрансляций принятого радиопакета.

Например, на рисунке 30 показан радиопакет, переданный ретранслятором № 5-112 зоны 1. Радиопакет был послан счетчиком газа ОМЕГА-ЭК №9-2015 и принят ретранслятором с уровнем сигнала -79 дБ и затем был передан мастеру USB-433.

Для ретранслятора на вкладке «Ретранслятор» доступны следующие действия.

4) На вкладке «Ретранслятор» нажать кнопку «Изменить параметры». В открывшемся

окне параметров приемо-передатчика ретранслятора установить следующие параметры (рисунок 31):

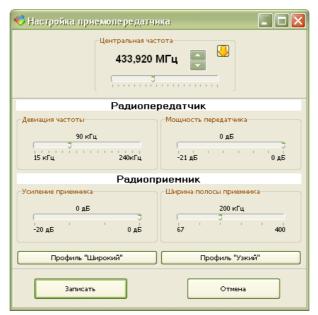


Рисунок 31 - Настройка трансивера ретранслятора

Центральная частота	- рабочая частота приемопередатчика ретранслятора, следует задать одну и ту же центральную частоту для всех блоков в радиоканале из диапазона
Девиация частоты	(433,05 434,79) МГц; - девиация частоты передатчика ретранслятора при передаче лог.1 и лог. 0, следует задать одну и ту же девиацию частоты для всех блоков в радиоканале из диапазона (15 240) кГц с шагом 15 кГц; девиация частоты должна быть меньше полосы пропускания приемника;
Мощность передатчика	- уровень усиления выходного сигнала передатчика ретранслятора, задается в диапазоне (-21 0) дБ с шагом 3 дБ, минимальное усиление сигнала при -21 дБ;
Усиление приемника	- уровень усиления входного сигнала приемника ретранслятора, уровень задается дискретно (0, -6, -14, -20) дБ, минимальное усиление сигнала при -20 дБ;
Ширина полосы приемника	- ширина полосы пропускания приемника ретранслятора, следует задать одну и ту же ширину полосы пропускания для всех блоков в радиоканале из ряда (67, 134, 200, 270, 340, 400) кГц; полоса пропускания приемника должна быть больше девиации частоты передатчика;
Профиль «Широкий»	- кнопка быстрой настройки с предустановленными значениями для ширины полосы пропускания приемника 200 кГц;
Профиль «Узкий»	- кнопка быстрой настройки с предустановленными значениями для ширины полосы пропускания приемника 67 кГц.

Если в местах установки ретрансляторов повышенный уровень шума в радиодиапазоне, высокий уровень помех от работающих устройств в диапазоне 433 МГц или имеется значительное ослабление сигнала, то необходимо подобрать свободную центральную частоту,

увеличить мощность передатчика и усиление приемника, подобрать девиацию частоты передатчика и ширину полосы пропускания приемников, например, профиль «Узкий».

Записать установленные значения параметров в память ретранслятора происходит при нажатии на кнопку «Записать».

При добавлении задания на изменение параметров ретранслятора в правой части окна в поле «Параметры» появится сообщение с указанием заводского номера ретранслятора, поставленного в очередь на изменение параметров (рисунок 32). Затем автоматически выполнится изменение его настроечных параметров. При успешной записи настроечных параметров в ретранслятор приходит от него подтверждающий радиопакет и в поле «Параметры» выводится подтверждающее сообщение.

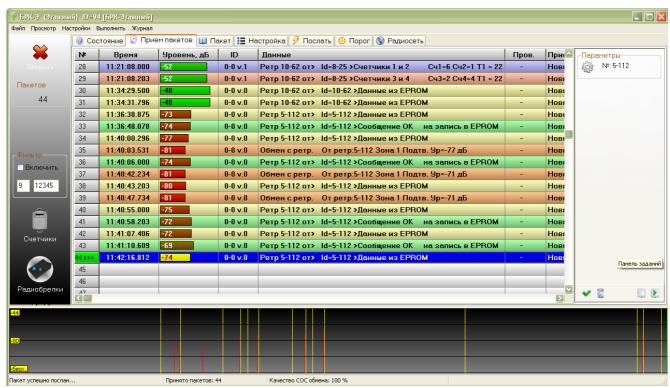
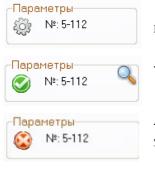



Рисунок 32 - Задание на изменение параметров ретранслятора

Ход процесса изменения настроечных параметров ретранслятора отображается в правой части окна «Параметры»:

- постановка задания на запись настроечных параметров, выполнение процесса записи настроечных параметров;
- процесс записи настроечных параметров успешно завершен;
- ошибка записи настроечных параметров, требуется повторить попытку записи.

Пакет с данными, считанными из памяти EPROM, показан на рисунке 33.

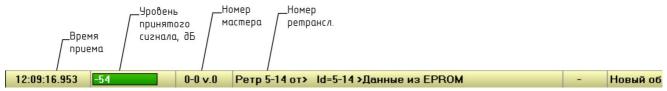


Рисунок 33 - Пример пакета «Данные из EPROM»

Пакет подтверждения успешной записи данных в EPROM, показан на рисунке 34.

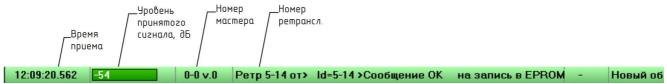


Рисунок 34 - Пример пакета «ОК на запись в EPROM»

Настройки режимов ретранслятора

На вкладке «Радиосеть» выбрать в контекстном меню команду «Изменить настройки». Ретранслятор позволяет изменить следующие настройки режима работы (рисунок 35). Следует установить или убрать «галочку» напротив требуемого параметра.

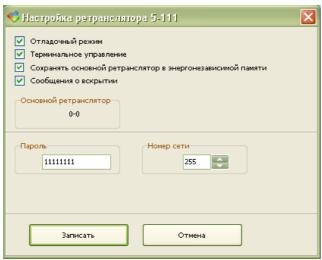


Рисунок 35 - Настройки режима работы ретранслятора

Отладочный режим	- выдача в терминал через последовательный порт ретранслятора протокола обмена по радиоканалу;
Терминальное управление	- разрешить подачу команд по последовательному порту через терминал;
Сохранять основной ретранслятор в памяти	- запомнить номер основного ретранслятора в энергонезависимой памяти;
Сообщения о вскрытии	- разрешить передавать сообщения о вскрытии корпуса ретранслятора;
Основной ретранслятор	- номер основного ретранслятора;
Пароль	- ввести пароль доступа к данным ретранслятора (единый для всех);

Номер сети	- ввести номер сети ретрансляторов: каждому мастер-устройству
	соответствует сеть ретрансляторов с определенным номером.

Дистанционная смена серийного номера

Ретранслятор позволяет дистанционно сменить свой серийный (заводской) номер, который является идентификатором ретранслятора в сети. На вкладке «Радиосеть» навести указатель «мышки» на ретранслятор, у которого требуется сменить заводской номер, нажать на правую кнопку «мышки» и в контекстном меню выбрать команду «Изменить серийный номер» или на вкладке «Ретранслятор» пакета (рисунок 30). Откроется окно ввода нового номера ретранслятора (рисунок 36).

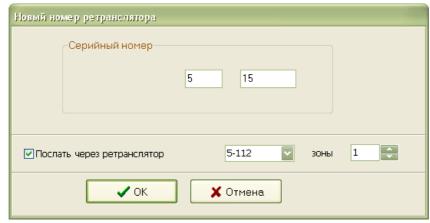


Рисунок 36 - Ввод нового номера ретранслятора

Серийный номер	- поле ввода нового серийного номера ретранслятора;
Послать через ретранслятор	- установить «галочку», если настраиваемый ретранслятор находится не в зоне 0; здесь указать серийный номер и зону
	расположения дополнительного ретранслятора.

Нажать «ОК» для подтверждения ввода нового номера.

12 Порядок работы

После автонастройки зон ретранслятор работает в автоматическом режиме приема пакетов и передаче их мастер-устройству или следующему ретранслятору с учетом зон ретранслящии. Вмешательство пользователя в работу ретранслятора не требуется. Ретранслятор принимает радиоосообщения от точек сбора данных (счетчиков с радиоканалом, радиоконцентраторов БРК-К и др.) и сохраняет во внутреннем промежуточном буфере. Далее, в соответствии с определенным алгоритмом ретранслятор добавляет к принятым сообщениям дополнительную информацию (свой адрес) и пересылает следующему ретранслятору. Прием данных ретранслятором от точек сбора данных является негарантированным, т.к. подтверждение ретранслятором о приеме сообщения не выполняется. Возможна работа нескольких мастер-устройств на одной и той же территории. В этом случае для каждого мастер-устройства будет свой район сбора данных. С целью разделения ретрансляторов для каждого из них задается номер сети (1-254) и номер основного-мастер-устройства. На рисунке 37 показан район сбора данных, состоящий из одного ретранслятора и некоторого количества точек сбора данных.

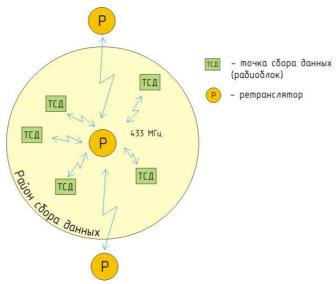


Рисунок 37 - Район сбора данных

Принцип работы ретранслятора поясняет структурная схема системы сбора данных коммерческого учета на рисунке 3. Система состоит из нескольких районов сбора данных (ретрансляторов) и центрального мастер-устройства БКД-ПК-RF, имеющего встроенный приемо-передатчик 433 МГц и GSM — модем сотовой связи. Для передачи данных на сервер системы используется специально организованная виртуальная частная сеть VPN, реализованная поверх GPRS канала передачи цифровых данных по сети сотовой связи. БКД-ПК-RF получает радиоданные как с ближайших ретрансляторов, так и с точек данных, расположенных в непосредственной близости от него.

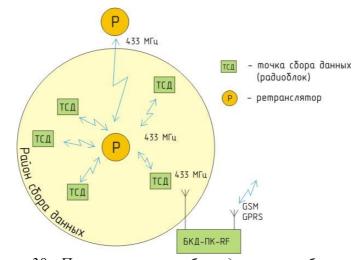


Рисунок 38 - Пример системы сбора данных приборов учета

В целом, один БКД-ПК-RF может принимать данные от достаточно большого протяженного района сбора данных. В этом случае ретрансляторы покрывают всю территорию района, образуя сложный «узор» покрытия. Например, учитывая, что в большинстве случаев зона покрытия каждого ретранслятора представляет собой круг радиусом (150-2000) метров, то географическое распределение ретрансляторов может быть такое как показано на рисунке 39.

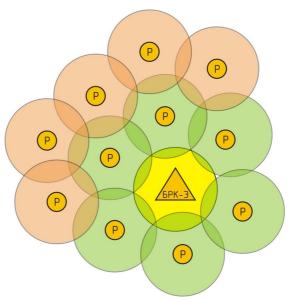


Рисунок 39 - Покрытие ретрансляторами большого района сбора данных

Ближайшие к БКД-ПК-RF ретрансляторы показаны зеленым цветом. Удаленные от шкафа ретрансляторы показаны розовым цветом. Эти ретрансляторы находятся вне зоны доступа БКД-ПК-RF и прием данных возможен только через промежуточные ретрансляторы.

Зона ретрансляции - это область, в которой расположены ретрансляторы, одинаково удаленные от мастер-устройства (далее «Мастер»). Все ретрансляторы, передающие и принимающие радиопакеты непосредственно от мастер-устройства располагаются в первой зоне ретрансляции — на рисунке зона 1 показана зеленым цветом.

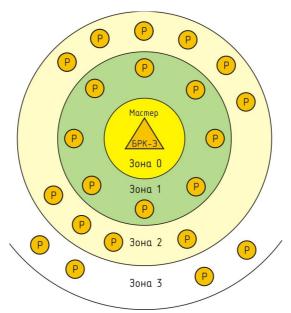


Рисунок 40 - Зоны ретрансляции

Все ретрансляторы, принимающие радиопакеты от ретрансляторов зоны 1, относятся к зоне ретрансляции номер 2 (зона показана желтым цветом). Далее расположена зона ретрансляции номер три (показана белым цветом). Количество зон ретрансляции для типовых объектов не превышает десяти. В идеальном случае зоны представляют собой кольца, расположенные вокруг мастер-устройства. Близлежащая к мастеру зона, где могут располагаться точки сбора данных, обозначается как зона номер ноль.

Для уменьшения работ по определению зон ретрансляции применяется процедура автоматического определения зон ретрансляции. В результате каждому ретранслятору в сети назначается номера зоны в которой этот ретранслятор расположен.

Дополнительно ретрансляторы зоны заносят в специальную таблицу ретрансляторов данные о ретрансляторе предыдущей зоны — его уникальный идентификационный номер и уровень сигнала от ретранслятора. Эта таблица в дальнейшем используется для маршрутизации пакетов от точек сбора. Таблицы ретрансляторов могут считываться из каждого ретранслятора мастером для анализа качества работы системы сбора данных коммерческого учета.

В случае отказа одно из ретрансляторов, передача пакетов осуществляется через другой ретранслятор той же зоны, что и отказавший.

Передача данных от мастера в ретрансляторы осуществляется посылкой пакета с указанием уникального идентификатора ретранслятора – адресата и номера его зоны. Все ретрансляторы нижней зоны пересылает пакет ретрансляторам верхней зоны, если номер зоны не превышает номер, заданный в пакете. Посылка каждым ретранслятором выполняется однократно и подтверждение между ретрансляторами не выполняется.

Для передач данных в точки сбора мастер посылает адресный пакет ретранслятору, принимающему пакеты от точки сбора. Полученный пакет ретранслятор помещает в специальный буфер передачи. Как только ретранслятор получает сервисный пакет, он тут же посылает пакет из буфера передачи в точку сбора данных. Ответный пакет от точки сбора (например, пакет ОК) проходит обычный путь от точки сбора до мастера.

Последовательность действий по пусконаладочным работам ретранслятора

- 1) На время настройки параметров разместить ретранслятор в непосредственной близости от мастер-устройства (5-10) м.
- 2) При помощи программы RASOS запустить процедуру автонастройки зон. Проверить появление на карте ретрансляторов нового ретранслятора.
- 3) При необходимости, при помощи программы RASOS, сменить серийный номер ретранслятора и обновить встроенную программу ретранслятора.
- 4) При помощи программы RASOS установить требуемые параметры радиоканала ретранслятора. Эти параметры должны соответствовать настройкам радиоканала мастер-устройства системы.
- 5) При помощи программы RASOS установить требуемые параметры режима работы ретранслятора, в том числе пароль доступа и номер сети. Пароль и номер сети должны совпадать с параметрами мастер-устройства системы.
- 6) Разместить ретранслятор на удалении не более (100-200) м от мастер-устройства или ретранслятора другой зоны.
 - 7) При помощи программы RASOS запустить процедуру автонастройки зон.
 - Проверить появление на карте ретрансляторов нового ретранслятора.
- Проверить номер зоны и уровень принятого сигнала мастер-устройства для нового ретранслятора. Номер зоны должен соответствовать рабочему проекту, уровень сигнала должен быть не менее -70 дБ.
- Проверить уровень фона в месте установки нового ретранслятора, который должен быть не более -75 дБ.

- Проверить количество доступных ретрансляторов для нового ретранслятора и уровни их сигналов. Количество доступных ретрансляторов должно соответствовать рабочему проекту. Уровни сигналов доступных ретрансляторов должны быть не менее -70 дБ.
- Проверить количество доступных точек сбора данных для нового ретранслятора и уровни их сигналов. Количество доступных точек сбора данных должно соответствовать рабочему проекту. Уровни сигналов доступных радиоблоков должны быть не менее -70 дБ.
- 8) Если новый ретранслятор не виден или уровень сигнала менее -70 дБ или не видны другие ретрансляторы соседних зон или точки сбора данных своей зоны, то рекомендуется изменить ориентировку антенны, уменьшить расстояние между ретрансляторами, место установки ретранслятора и т.п. Подбор оптимального места расположения нового ретранслятора носит итерационный характер в силу многих не учитываемых факторов, влияющих на дальность связи.

13 Техническое обслуживание

Техническое обслуживание ретранслятора состоит из проверок заданной периодичности. По результатам эксплуатации ретранслятора в сложных условиях, например, при наличии пыли, грязи, большой вероятности протеканий воды, риске механического повреждения и т.п., допускается уменьшение периода проверок. Перечень работ по техническому обслуживанию приведен в таблице 4.

Таблица 4 - Перечень работ по техническому обслуживанию ретранслятора

Наименование работы	Порядок проведения		
Внешний осмотр (ежемесячный)	При внешнем осмотре: - визуально проверить отсутствие механических повреждений корпуса и гермоввода, наличие маркировки и пломб; - подтянуть гайки гермоввода в случае их ослабления; - проверить прочность крепления ретранслятора, солнечного модуля и антенны; - протереть корпус влажной ветошью в случае чрезмерного накопления пыли и грязи.		
Проверка работоспособности (ежегодная)	Перечень работ: - проверка потребляемого тока; - проверка работоспособности аккумуляторной батареи; - проверка работоспособности солнечного модуля; - проверка работоспособности автонастройки зон ретрансляции; - проверка работоспособности режима ретрансляции; - проверка работоспособности схемы контроля напряжения питания.		

Проверка потребляемого тока

При помощи RASOS считать состояние ретранслятора командой «Запросить состояние». Потребляемый ток от аккумуляторной батареи в ночное время должен быть не более 5 мА.

Проверка работоспособности аккумуляторной батареи

При помощи RASOS считать состояние ретранслятора командой «Запросить состояние». Напряжение на аккумуляторной батареи должно быть (2,7 — 3,7) В. Величина заряда аккумуляторной батареи должна быть не менее 90 %.

Проверка работоспособности солнечного модуля

При помощи RASOS считать состояние ретранслятора командой «Запросить состояние». Напряжение на входе 1 или 2 (солнечный модуль) в светлое время суток должно быть (1,10—1,95) В.

Проверка работоспособности автонастройки зон ретрансляции

Расположить ретрансляторы в последовательности, показанной на рисунке 41, таким образом, чтобы пересекались радиусы дальности действия соседних ретрансляторов.

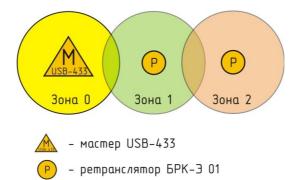


Рисунок 41 - Расположение ретрансляторов для проверки

Выполнить процедуру автоопределения зон и составления таблиц ретрансляторов (см. раздел 11).

Для ретранслятора зоны 1 считать таблицу доступных ретрансляторов и проверить, что в ней содержится мастер и ретранслятор зоны 2 (пример показан на рисунке 42).

	Доступные ретрансляторы			
Nº	Адрес	Зона	Уровень 🖺	
1	0-0	0	-55 дБ (106)	
2	5-15	2	-78 дБ (67)	
3				
4				
5			V	
		î		

Рисунок 42 - Таблица доступных ретрансляторов зоны 1

Для ретранслятора зоны 2 считать таблицу доступных ретрансляторов и проверить, что в ней содержится ретранслятор зоны 1 (пример показан на рисунке 43).

Аналогично проводят проверку формирования сети ретрансляции при большем количестве ретрансляторов и для других вариантов их взаимного расположения. Таблица доступных ретрансляторов должна соответствовать схеме расположения ретрансляторов с учетом их дальности действия.

Доступные ретрансляторы			
N²	Адрес	Зона	Уровень 🧧
1	5-14	1	-70 дБ (81)
2			
3			
4			
5			

Рисунок 43 - Таблица доступных ретрансляторов зоны 2

Примечание — Проверку работоспособности автонастройки зон ретрансляции допускается проводить на собранной и действующей системе.

Проверка работоспособности режима ретрансляции

Проверка работоспособности режима ретрансляции состоит в сравнении информации устройства точки сбора данных, полученной мастер-устройством через ретранслятор и принятой непосредственно. В качестве устройства точки сбора данных может быть использован блок БРК-К или счетчик газа Омега ЭК. Проверяемый ретранслятор должен быть расположен в зоне 1 (рисунок 44).

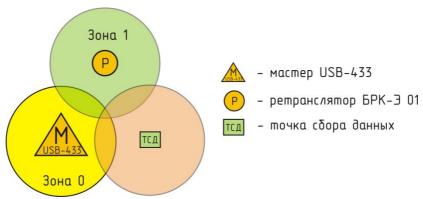
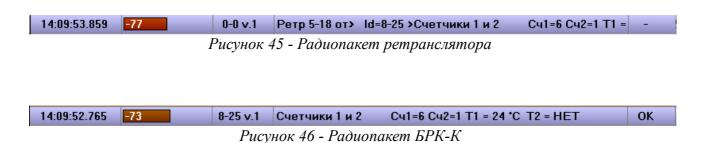



Рисунок 44 - Схема расположения ретранслятора

В программе RASOS проверить поступление радиопакетов от ретранслятора, содержащих данные устройства точки сбора данных, например, БРК-К, как показано на рисунке 45. Проверить поступление радиопакетов непосредственно от устройства точки сбора данных (рисунок 46).

Проверить совпадение информации БРК-К, принятой мастер-устройством непосредственно (рисунок 47) и поступившей через ретранслятор (рисунок 48).

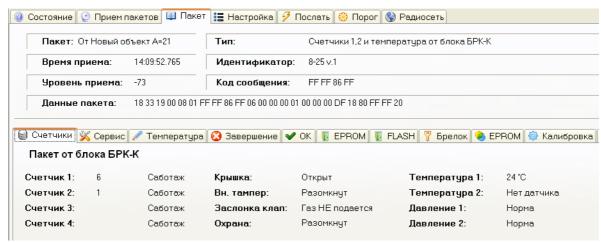


Рисунок 47 - Информация радиопакета БРК-К

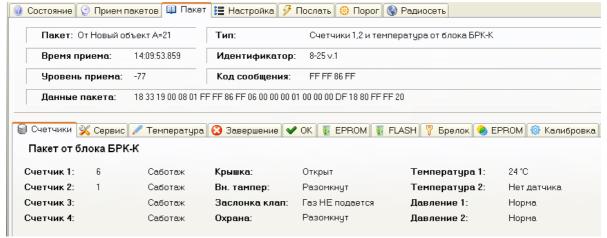


Рисунок 48 - Информация радиопакета БРК-К, переданного ретранслятором

Проверка работоспособности схемы контроля напряжения питания

Отключить питание ретранслятора и проверить поступление радиопакета «Питание отключено» (рисунок 49).

При обнаружении несоответствия ретранслятора заданным требованиям блок необходимо отправить в ремонт.

14 Текущий ремонт

Перед поиском неисправности и текущим ремонтом необходимо ознакомиться с принципом действия и работой ретранслятора. Измерительные приборы и оборудование, подлежащие заземлению, должны быть надежно заземлены. Описания последствий наиболее вероятных отказов ретранслятора, возможные причины и способы их устранения приведены в таблице 5.

Таблица 5 - Наиболее вероятные отказы ретранслятора, возможные причины и способы их устранения

Признаки проявления неисправности	Возможные причины	Действия по устранению неисправности
	Неверно заданы значения параметров радиоинтерфейса мастер-устройства или ретранслятора	Установить требуемые значения настроечных параметров радиоинтерфейса мастер-устройства или ретранслятора
Ретранслятор не доступен	Слишком слабый сигнал от ретранслятора	Уменьшить расстояние до ретранслятора, подобрать ориентацию антенны
	Не подано питание на ретранслятор	Проверит подключение шнура питания и свечение индикатора «Питание»
Радиоблок (БРК-К, Омега ЭК и проч.) не доступен	Неверно заданы значения параметров радиоинтерфейса радиоблока	Установить требуемые значения настроечных параметров радиоинтерфейса радиоблока
	Слишком слабый сигнал от радиоблока	Уменьшить расстояние до ретранслятора, подобрать ориентацию антенны

15 Транспортирование

Ретранслятор в упакованном виде следует транспортировать в крытых транспортных средствах (железнодорожных вагонах, закрытых автомашинах) в соответствии с правилами перевозки грузов, действующими на соответствующем виде транспорта.

Механические воздействия и климатические условия при транспортировании ретранслятора не должны превышать допустимые значения:

- категория Л по ГОСТ 23170-78;
- температура окружающего воздуха (-40 ... + 60) °C;
- относительная влажность окружающего воздуха не более 95 % при 25 °C.

При транспортировании ретранслятора необходимо соблюдать меры предосторожности с учетом предупредительных надписей на транспортных ящиках. Расстановка и крепление ящиков в транспортных средствах должны обеспечивать их устойчивое положение, исключать возможность смещения ящиков и соударения.

16 Хранение

Ретранслятор следует хранить в упакованном виде (допускается хранение в транспортной таре) в отапливаемых помещениях группы 1 (Л) по ГОСТ 15150-68 при отсутствии в воздухе кислотных, щелочных и других агрессивных примесей.