ОКП 34 3439

Шкафы управления ШУ АХП

Паспорт

ECAH.656514.001ΠC

Модель ШУАХП-_____

ОГЛАВЛЕНИЕ

ОБЩИЕ СВЕДЕНИЯ	3
НАЗНАЧЕНИЕ	3
Структура условного обозначения шкафов	3
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	4
комплектность	7
УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ	7
Указания мер безопасности	7
Установка и подключение	7
Подготовка к работе	9
Порядок работы	10
Информационная интеграция в АИИС КУЭ	11
Техническое обслуживание	12
СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ	16
СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	16
ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ	16
ГАРАНТИИ ИЗГОТОВИТЕЛЯ	16
ПРИЛОЖЕНИЕ	18
Схемы шкафов электрические принципиальные	18
Перечень оборудования шкафа	26
Размещение оборудования в шкафу	28
Назначение разъемов шкафа	29
Габаритные размеры шкафа	32

ОБЩИЕ СВЕДЕНИЯ

Предприятие-изготовитель: общество с ограниченной ответственностью «УИС-Сервис», адрес 111033, г. Москва, ул. Самокатная, д.2A, стр.1, тел./факс (499) 271-73-01.

Декларация о соответствии

НАЗНАЧЕНИЕ

Шкафы управления ШУ АХП (далее—шкафы) представляют собой электротехнические устройства низкого напряжения, предназначенные для коммутации силовых цепей, сгруппированных в несколько функционально-выделенных направлений управления фидерами осветительных приборов, а том числе многоканальными светильниками архитектурно-художественной подсветки и прочим электрооборудованием, защиты от коротких замыканий и перегрузок по току, а также для автоматизированного коммерческого или технического учета электрической энергии и мощности, оперативного контроля ее потребления и качества.

Шкафы передают информацию в систему сбора данных, а также получают команды управления по сети TCP/IP (Ethernet, GPRS). Управление группами электроприемников, например, статическими осветительными приборами, в том числе трехфазными, подключенными к линиям «Лампы», может производиться непосредственно или по заданному алгоритму (сценарию) средствами телеуправления, локально — вручную, а также автоматически — по расписанию (сценарию). Управление динамическими осветительными приборами производится по каналам интерфейсов DMX512. Шкафы имеют настенное исполнение, двери шкафов снабжены замками и датчиками открытия.

Шкафы входят в состав автоматизированной измерительно-информационной системы «КУЭ и TM», номер СИ 59699-15 в госреестре РФ.

Структура условного обозначения шкафов

Шкафы управления ШУ АХП, исполнения: ШУ АХП.АА.NB-CD.E.F-GH.I.J.O.K-L,

где:

- «AA» номер модели шкафа цифры: 01; 02; 03;
- «NB» внутренняя маркировка внутри комплекта;
- «С» количество счетчиков электрической энергии цифры: 0; 1; 3
- «D» наличие трансформаторов тока ТТИ цифры: 0; 1;
- «E» наличие блока БКД-ПК-RF- цифры: 0; 1;

- «F» количество блоков управления САТ 3907-05 цифры: 0 или от 1 до 9;
- «G» ток отсечки в канале управления САТ 3907-05 цифры: 1; 2; 3
- «Н» наличие в канале управления САТ 3907-05 устройств плавного пуска РОПТ цифры: 0; 1;
- «I» количество блоков управления динамикой освещения DMX цифры: 0 или от 1 до 9;
- «J» наличие GPS приемника точного времени СНП-01 цифры: 0; 1;
- цифра: 0;
- «К» наличие термостата и нагревателя FGC3003 цифры: 0; 1;
- «L» тип и размер шкафа цифры: от 1 до 5

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные технические характеристики шкафов приведены в таблице 2.

Таблица 2

Наименование параметра	Значение параметра
Номинальное рабочее напряжение питающей сети, В	380/220
Допустимое отклонение напряжения питающей сети, %	+10, -15
Номинальная частота питающей сети, Гц	50
Допустимые отклонения частоты питающей сети, %	2
Номинальное напряжение изоляции, В	440
Количество каналов контроля, шт.	36
Номинальные токи трехфазных вводных аппаратов, А	160
Количество каналов статического управления	12
Количество каналов динамического управления DMX512	6
Номинальные токи каналов статического управления, А	20
Номинальный ожидаемый ток короткого замыкания, кА, не более	6
Номинальные отключающие дифференциальные токи каналов	30
статического управления, мА	
Время готовности к работе, мин	10
Потребляемая мощность, ВА (без нагрузки), не более	
- исполнение ШУ АХП.АА.NB-CD.E.F-GH.I.J.0.0-L	110
- исполнение ШУ АХП.АА.NB-CD.E.F-GH.I.J.0.1-L	360
Степень защиты оболочки по ГОСТ 14254	IP30, IP55
Система заземления	TN-S
Информационные интерфейсы	Ethernet 100BASE-TX, GSM,
	UMTS
Диапазон рабочих частот, МГц	
- GSM 900/DCS1800	900/1800
- UMTS (WCDMA FDD B1, B8)	900/2100
Выходная мощность, Вт, в зависимости от диапазона частот	

Наименование параметра	Значение параметра
- GSM 900	2
- DCS1800	1
- EDGE 900	0,5
- EDGE 1800	0,4
- WCDMA 900, 2100	0,25
Сетевые протоколы	UDP, TCP, IP, FTP, SSH, NTP, Telnet, GPRS/EDGE, HSPA+, OPC DA, OPC UA, Modbus RTU, TCP
Тип электросчетчика	Меркурий 234
Тип трансформатора тока	ТТИ
Система точного времени	ГЛОНАСС, GPS
Габаритные размеры (высота, ширина, глубина), мм, не более	2000x1000x500
Масса, кг, не более	30
Условия эксплуатации:	
- температура окружающего воздуха, °С	
для исполнений ШУ АХП.АА.NB-CD.E.F-GH.I.J.0.0-L	-10 +70
для исполнений ШУ АХП.АА.NB-CD.E.F-GH.I.J.0.1-L	-40 +70
- относительная влажность окружающего воздуха, %, при +25 °C,	
без конденсации	10 95
- атмосферное давление, кПа	84 106
Средний срок службы, лет	16

Шкафы обеспечивают выполнение следующих функций:

- учет количество активной и реактивной электроэнергии и мощности, параметров электроснабжения (тока, напряжения, частоты, мощности и проч.) при помощи трехфазных счетчиков электроэнергии, подключенных непосредственно или через трансформаторы тока;
- периодический и/или по запросу сбор текущих данных и диагностической информации со счетчиков электроэнергии по цифровым интерфейсам RS-232 (3 шт.), RS-485;
- считывание архивных данных из памяти счетчиков электроэнергии со своими метками времени по цифровым интерфейсам RS-232, RS-485;
- передача данных счетчиков на сервер информационно-измерительной системы по каналам связи TCP/IP, в том числе по сети мобильной связи GSM (2 SIM карты) по протоколу GPRS;
- поддержку OPC Unified Architecture IEC 62541 (OPC UA), поддержку протоколов передачи данных по ГОСТ Р МЭК 60870-5-101-2006, ГОСТ Р МЭК 60870-5-104-2004, Modbus (RTU, TCP);
- накопление полученной информации в памяти в случае невозможности ее немедленной передачи на сервер системы;
 - корректировка встроенных часов вручную или по командам от сервера системы;
- вычисление значения разности текущего времени встроенных часов и значения точного времени приемника ГЛОНАСС/GPS блока БНП, обеспечивающего вывод информации о времени и дате в формате протокола NMEA-0183, с целью корректировки меток времени регистрируемых событий;
 - управление электрооборудованием (фидерами групп освещения и проч.);

- управления осветительными установками со статическими и динамическими (по протоколу DMX512) осветительными приборами по нескольким каналам управления;
- работа в режимах переключения групп освещения (праздничный, будний, тестовый), изменения яркости освещаемых объектов или цветности источников света в соответствии с заданным временным расписанием (сценарием);
- работа в режимах управления электрооборудованием: автономный (по заданному алгоритму расписанию при отсутствии связи с сервером системы), ручной местный, автоматический дистанционный, автоматизированный, наладочный;
 - защита отходящих линий каналов управления от токов перегрузки и короткого замыкания;
- защита отходящих линий каналов управления от пропадания (обрыва) фазы, перенапряжения и пониженного напряжения;
- ограничение пускового тока в течение 40 мс отходящих линий каналов управления при подключении индуктивной или емкостной нагрузки при помощи гасящих резисторов;
 - контроль напряжения в отходящих линиях и состояния магнитных пускателей;
 - контроль напряжения на вводе после автоматического выключателя;
 - контроля внешних сигналов пожарной, охранной сигнализации;
 - контроль несанкционированного доступа внутрь шкафов;
- автономная работа управляющего контроллера от резервного встроенного источника питания в течение времени, необходимом для передачи информации на сервер системы об отсутствии напряжения основного источника питания;
- информационное взаимодействие (передача данных и получение команд управления) с системами верхнего уровня по сети TCP/IP (Ethernet, GPRS) с использованием технологии VPN;
- сохранение без потерь считанных данных в памяти в случае невозможности немедленной их передачи на сервер системы;
 - периодический контроль работоспособности каналов связи со счетчиком и сервером системы;
 - ведение электронного протокола диагностических сообщений о работе;
- поддержание заданной минимальной температуры воздуха внутри шкафа при помощи электрического нагревателя и термостата при отрицательных значениях температуры окружающего воздуха;
 - защита от несанкционированного доступа к данным и настроечным параметрам;
- сохранение работоспособности контроллера управления при пропадании напряжения двух любых фазных напряжений и наличии хотя бы одного фазного напряжения;
- сохранения работоспособности контроллера на время не менее 2 минут при пропадании напряжения питания.

КОМПЛЕКТНОСТЬ

Комплект поставки шкафов приведен в таблице 3.

Таблица 3

Обозначение	Наименование	Марка	Кол.	Примечание
ECAH.656514.009	Шкаф управления ШУ АХП	в соответствии со картой заказа	1	
ЕСАН.656514.009ПС Шкафы управления ШУ АХП. Паспорт			1	

Примечание -

- 1. Комплектность шкафа в соответствии со структурой условного обозначения.
- 2. Поставляется эксплуатационная документация на элементы оборудования шкафа.

УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

Указания мер безопасности

ВНИМАНИЕ! Внутри шкафов имеется опасное для жизни напряжение 380/220 В переменного тока 50 Гц.

К работам по монтажу, обслуживанию и эксплуатации шкафа допускаются подготовленные лица, прошедшие инструктаж по технике безопасности и имеющие квалификационную группу по электробезопасности не ниже III для электроустановок до 1000 В.

Перед включением электропитания шкафа необходимо проверить правильность подключения входных и выходных цепей в соответствии со схемой подключения (см. приложение).

Перед включением электропитания шкафа должен быть надежно заземлен в соответствии с требованиями ПУЭ.

Все работы по монтажу и демонтажу должны выполняться при отключенных входных напряжениях.

При монтаже, пусконаладочных работах и эксплуатации шкафа необходимо руководствоваться следующими документами:

- «Правилами устройства электроустановок» ПУЭ;
- «Межотраслевыми правилами по охране труда (правила безопасности) при эксплуатации электроустановок» ПОТ Р М-016-2001;
 - «Правилами технической эксплуатации электроустановок потребителей»;
- действующими на предприятии инструкциями по охране труда, технике безопасности и пожарной безопасности.

Установка и подключение

Перед монтажом выдержать шкафы в помещении не менее 6 ч, если транспортирование производилось при температуре воздуха меньше 0 °C.

Перед монтажом шкафов необходимо проверить:

- комплектность согласно паспорту;
- отсутствие повреждений корпуса, кабельных вводов;
- наличие приемлемого уровня сигнала GSM сотового оператора (при организации связи с сервером системы сбора данных по GPRS);

- наличие приемлемого уровня сигнала ГЛОНАСС/GPS (для исполнений шкафов с модулями DMX512).

При монтаже шкафов запрещается:

- оставлять корпус со снятыми защитными панелями, с открытой дверцей;
- сверлить дополнительные отверстия в корпусе.

Место установки шкафов, в общем случае, должно отвечать следующим требованиям:

- соответствовать условиям эксплуатации;
- быть в зоне действия сигналов GSM, ГЛОНАСС/GPS;
- отсутствие мощных электромагнитных полей;
- сухое без скопления конденсата, отсутствие протечек воды сквозь перекрытия;
- защищенное от пыли, грязи и от существенных вибраций;
- удобное для монтажа и обслуживания;
- расстояние более 0,5 м от отопительных систем;
- исключающее механические повреждения и вмешательство в работу посторонних лиц.

Установить и закрепить шкафы на строительные конструкции в соответствии с рабочим проектом.

Заземлить корпус и дверцу шкафа проводом

Установить кабельные вводы шкафов из транспортного положения в рабочее.

Подключить кабель антенны ANT1 GSM к разъему X1 блока A8 БКД-ПК-RF. Кабель зафиксировать в гермовводе. Антенну расположить снаружи шкафа в месте уверенного приема сигнала сотовой связи. Кабель проложить в кабель-канале.

Подключить кабель активной антенны ANT3 GPS к разъему блока A18 приемника СНП-01. Кабель зафиксировать в гермовводе. Антенну расположить снаружи шкафа на открытой площадке в месте уверенного приема сигнала GPS. Кабель проложить в кабель-канале.

Подключить кабель антенны ANT4 GSM к разъему блока A7 счетчика электроэнергии. Кабель зафиксировать в гермовводе. Антенну расположить снаружи шкафа в месте уверенного приема сигнала сотовой связи. Кабель проложить в кабель-канале.

Подключить кабель антенны ANT5 GSM к разъему блока A10 счетчика электроэнергии. Кабель зафиксировать в гермовводе. Антенну расположить снаружи шкафа в месте уверенного приема сигнала сотовой связи. Кабель проложить в кабель-канале.

Подключить вилку разъема 8Р8С кабеля интерфейса 100Base-Tx Ethernet к гнезду разъема X8 блока БКД-ПК-RF. Рекомендуемый тип кабеля КВПВП-5е 2x2x0,52 длинной до 100 м. Кабель зафиксировать в гермовводе. Кабель интерфейса RS-485 проложить открыто в кабель-канале или гибкой гофрированной легкой трубе ПВХ диаметром 16 мм.

При необходимости, подключить выход реле прибора пожарной (охранной) сигнализации к клеммам X2.5 и X2.6. Рекомендуемый тип кабеля КВПВП-5е 2х2х0,52 минимально возможной длины. Кабель зафиксировать в гермовводе. Срабатывание сигнализации должно сопровождаться разрывом контактов реле. Если сигнал пожарной сигнализации не используется, то установить перемычку на эти клеммы. Кабель проложить открыто в кабель-канале или гибкой гофрированной легкой трубе ПВХ диаметром 16 мм.

Подключить кабель ввода 1 главной цепи 380B/220B к винтовому клеммнику X1 в соответствии с электрической схемой. Рекомендуемый тип кабеля ВВГ-нг(A)-LS 5x50 в случае нагрузки всех выходов номинальным током. Сечение кабеля ввода выбирают исходя из подключенной нагрузки. Кабель проложить открыто в кабель-канале.

Подключить кабель ввода 2 главной цепи 380B/220B к винтовому клеммнику X3 в соответствии с электрической схемой. Рекомендуемый тип кабеля ВВГ-нг(A)-LS 5x50 в случае нагрузки всех

выходов номинальным током. Сечение кабеля ввода выбирают исходя из подключенной нагрузки. Кабель проложить открыто в кабель-канале.

Подключить кабели нагрузки (линии освещения и проч.) к винтовым клеммам каналов статического управления в соответствии с электрической схемой:

```
- «Группа №1» клеммы X2.25 — X2.29;
- «Группа №2» клеммы X2.30 — X2.34;
- «Группа №3» клеммы X2.35 — X2.40;
- «Группа №4» клеммы X2.41 — X2.45;
- «Группа №5» клеммы X2.46 — X2.50;
- «Группа №6» клеммы X2.51 — X2.55;
- «Группа №7» клеммы X2.56 — X2.60;
- «Группа №8» клеммы X2.61 — X2.65;
- «Группа №9» клеммы X2.61 — X2.65;
- «Группа №9» клеммы X2.66 — X2.70;
- «Группа №10» клеммы X2.71 — X2.75;
- «Группа №11» клеммы X2.76 — X2.80;
- «Группа №12» клеммы X2.81 — X2.85.
```

Рекомендуемый тип кабеля BBГ-нг(A)-LS 5x2,5. Кабель проложить открыто в кабель-канале.

Подключить кабели интерфейса DMX светильников с динамическим управлением к клеммам шкафа в соответствии с электрической схемой:

```
- «Группа №1» клеммы X2.7 – X2.9;

- «Группа №2» клеммы X2.10 – X2.12;

- «Группа №3» клеммы X2.13 – X2.15;

- «Группа №4» клеммы X2.16 – X2.18;

- «Группа №5» клеммы X2.19 – X2.21;

- «Группа №6» клеммы X2.22 – X2.24.
```

Рекомендуемый тип кабеля КВПВП-5е 2x2x0,52. Кабель интерфейса RS-485 проложить открыто в кабель-канале или в гибкой гофрированной легкой трубе ПВХ диаметром 16 мм.

Зафиксировать подсоединенные внешние кабели в кабельных вводах шкафов.

Проверить правильность подключения внешних кабелей.

Подготовка к работе

Шкаф ШУ АХП поставляется предприятием-изготовителем с предварительно настроенным программным обеспечением контроллера БКД-ПК-RF. Необходимо произвести работы для настройки режимов работы и каналов связи с сервером системы для работ в составе автоматизированной измерительно-информационной системы АИИС «КУЭ и ТМ».

Установить в слот X2 контроллера БКД-ПК-RF A8 SIM-карту оператора связи, с которым заключен договор на услуги передачи данных Интернет через GPRS. БКД-ПК-RF используется в качестве основного канала связи.

Установить в слот X13 контроллера БКД-ПК-RF A8 SIM-карту оператора связи, с которым заключен договор на услуги передачи данных Интернет через GPRS. Модем используется в качестве резервного канала связи.

При необходимости, установить в слот XS3 счетчиков электроэнергии Меркурий 234М A7 и A10 SIM-карты оператора связи, с которым заключен договор на услуги передачи данных Интернет через GPRS.

Вставить вилку питания светильника в розетку XR.

На блоке A16 ПЭФ-301 установить следующие значения напряжений при помощи потенциометров:

- Umin(в) = 190 В (уровень минимального порога срабатывания реле);
- Umax(в) = 240 В (уровень максимального порога срабатывания реле);
- Твкл(c) = 20 с (время автоматического повторного включения нагрузки после восстановления параметров напряжения на одной из фаз, а также время первоначального включения нагрузки при подаче напряжения на прибор);
 - Тв(с) = 50 с (диапазон времени возврата на приоритетную фазу).

На ИПБ A20 перевести переключатель «АКБ» в положение «ВКЛ».

Установить переключатели режима работы 1S1 – 1S6, 2S1 – 2S6 в положение «ВЫКЛ».

Перевести выключатели дифференциального тока 1A1 – 1A6, 2A1 – 2A6 в положение «вкл».

Перевести автоматические выключатели 1QF3 - 1QF8, 2QF3 - 2QF8, QF9, QF11 — QF14 в положение «вкл». QF10 включают только при отрицательных температурах окружающего воздуха.

Включить ввод 1 сетевое напряжение питания шкафа при помощи автоматического выключателя 1QF1, а ввод 2 – при помощи 2QF1.

После подачи напряжения проконтролировать:

- включение счетчиков электроэнергии: на индикаторе отображается значение учтённой энергии по текущей тарифной зоне;
- нормальную работу реле контроля напряжения CM-PVE по непрерывному свечению индикатора на корпусе реле;
- включение резервного источника бесперебойного питания A20 по непрерывному свечению индикатора «Сеть», «Выход» на корпусе источника (индикатор «Заряд АКБ» светится во время заряда аккумуляторной батареи, затем от гаснет);
- включение индикатора L1 блока ПЭФ-301 при работе от фазы L1, остальные индикаторы должны быть погашены;
- включение блока питания A19 по непрерывному свечению индикатора «DC OK» на его корпусе;
- включение контроллера БКД-ПК-RF по непрерывному свечению индикатора «Питание» и подключение к серверу системы сбора данных (сервер должен быть предварительно настроен на работу с ШУ АХП) по непрерывному свечению индикатора «Связь с сервером» (установление связи с сервером занимает несколько минут при наличии GSM связи):
- включение модуля САТ3907-04 по непрерывному свечению индикатора «Работа» и обмену с контроллером БКД-ПК-RF по прерывистому свечению индикатора «Обмен (X4)»;
- наличие питания модуля СНП-01 по непрерывному свечению индикатора «VCC», готовности точного времени по миганию индикатора «Status»;
 - наличие питания модулей M-DMX по непрерывному свечению индикатора «Питание».

После проведения монтажных и пусконаладочных работ закрыть дверцу шкафа на ключ. При необходимости опломбировать дверь шкафа.

Порядок работы

Схемы электрические и расположения элементов в шкафу ШУАХП приведены в приложении.

Шкафы ШУ АХП обеспечивают управление группами освещения локальным и дистанционным способами. Локальный способ управления может быть ручным или автоматическим. Режим задается при помощи переключателей 1S1 – 1S6, 2S1 – 2S6. В ручном режиме для включения группы освещения следует перевести переключатель в положение «РУЧ». Для выключения группы освещения следует перевести переключатель в положение «ВЫКЛ». В ручном режиме игнорируются

все команды, формируемые контроллером шкафа ШУ АХП, а также поступающие с централизованного пункта управления. При переводе переключателей в положение «АВТ» включается дистанционный способ управления и автоматический режим управления.

Шкафы ШУ АХП предназначены для работы в следующих режимах управления:

- автономный;
- автоматический;
- автоматизированный;
- наладочный.

В автономном режиме управления включение группы освещения или изменения яркости освещаемых объектов или цветности источников света в соответствии с заданным временным расписанием (сценарием) происходит в соответствии с записанным в память управляющего контроллера БКД-ПК-RF сценарием в зависимости от времени и дня года. Этот режим включается при отсутствии связи с сервером системы.

При наличии связи контроллер БКД-ПК-RF шкафа ШУ АХП устанавливает исходящее соединение TCP/IP через сеть GSM/GPRS или сеть проводного провайдера сети Internet с сервером системы. Поверх установленного соединения TCP/IP устанавливается соединение VPN, обеспечивающее аутентификацию контроллеров и защиту передаваемых данных. Через созданный тоннель VPN контроллер БКД-ПК-RF устанавливает соединение с программным компонентом «Сервер OPC».

Информационное взаимодействие программного обеспечения верхнего уровня с компонентом «Сервер ОРС» осуществляется по локальной сети предприятия по протоколу ОРС DA при помощи существующего в структуре верхнего уровня программного компонента «Клиент ОРС».

Основным режимом управления группами освещения является автоматический режим. В этом режиме от сервера системы по каналу связи поступают команды для шкафа ШУ АХП на переключение соответствующих групп освещения или изменения яркости освещаемых объектов или цветности источников света в соответствии с заданным временным расписанием (сценарием).

В автоматизированном режиме управления от сервера системы по каналу связи поступают команды оператора для шкафа ШУ АХП на переключение соответствующих групп освещения или изменения яркости освещаемых объектов или цветности источников света и проч. Таким образом, оператор системы дистанционно управляет группами освещения.

Наладочный режим предназначен для проведения монтажных, наладочных и ремонтных работ. Оператор дистанционно может переключать группы освещения и изменять настроечные параметры электрооборудования, но информация о состоянии групп освещения не регистрируется в отчетных формах.

Шкафы ШУ АХП реализуют следующие сценарии освещения:

- будничный,
- праздничный;
- тестовый.

Сценарий освещения представляет собой алгоритм включения и выключения соответствующих групп освещения или изменения яркости освещаемых объектов или цветности источников света в зависимости от времени. Сценарии хранятся как на сервере системы, так и в памяти контроллера БКД-ПК-RF шкафа ШУ АХП. Имеется возможность дистанционной записи сценария в память контроллера БКД-ПК-RF. Управление может быть, как статическими осветительными приборами, подключенными к выходным линиям «Лампы», так и динамическими — подключенными к каналам интерфейса DMX512. Выбор сценария осуществляется контроллером БКД-ПК-RF автоматически в соответствии с записанным расписанием. При необходимости реализуемый сценарий может быть заменен по команде с сервера управления.

Информационная интеграция в АИИС КУЭ

Информационная интеграция ШУ АХП в АИИС КУЭ производится путем организации прозрачного соединения между программным обеспечением системы АИИС КУЭ и

последовательным портом контроллера БКД-ПК-RF, к которому подключен прибор учета электроэнергии. Прозрачный канал позволяет системе АИИС КУЭ получать любую информацию о состоянии прибора учета электроэнергии и считывать внутренние журналы прибора используя только систему команд, поддерживаемую данным прибором.

После включения контроллера БКД-ПК-RF управляющая программа выполняет открытие и настройку параметров последовательного порта, к которому подключен прибор учета электроэнергии. Одновременно с этим управляющая программа начинает ожидать внешних соединений по протоколу TCP/IP на TCP-порту 2000 (значение по умолчанию).

При отсутствии соединений к TCP порту управляющая программа выполняет периодическое чтение текущих значений параметров с прибора учета электроэнергии и их передачу на сервер системы управления для отображения информации в системе технического учета.

Инициатором обмена информацией с прибором учета электроэнергии всегда является система АИИС КУЭ. Количество и длительность сеансов связи определяется непосредственно системой АИИС КУЭ.

При подключении АИИС КУЭ к порту 2000 по защищенному каналу VPN, управляющая программа прекращает периодическое чтение данных с прибора учета электроэнергии и организует прозрачный канал передачи данных между соединением по TCP/IP и последовательным портом. На время организации прозрачного канала, значения каналов данных формируемых управляющей программой и относящихся к прибору учета электроэнергии не изменяются.

Передача данных в систему АИИС КУЭ выполняется по следующему алгоритму:

- все данные, полученные из сетевого соединения, передаются в последовательный порт;
- все данные, полученные из последовательного порта, передаются в сетевое соединение;
- при приеме и передаче данных по последовательному интерфейсу используются настройки порта, установленные управляющей программой БКД-ПК-RF при ее запуске.

В случае корректного отключения АИИС КУЭ или отсутствии принимаемых или передаваемых данных в течении более чем 120 секунд, управляющая программа закрывает TCP/IP соединение и возобновляет самостоятельное чтение текущих данных с прибора учета электроэнергии. При попытке создания одновременно более чем одного внешнего подключения к порту TCP/IP, управляющая программа закрывает предыдущее соединение и организует прозрачный канал с последним соединением.

Счетчики электроэнергии Меркурий 234M оснащены встроенным GSM модемом для передачи показаний по сети сотовой связи в систему сбора данных.

Техническое обслуживание

Перечень работ по периодическому техническому обслуживанию шкафа ШУ АХП приведен в таблице 4.

Таблица 4

Наименование работы	Периодичность проведения	Перечень работ
Внешний осмотр	1 раз в 6 месяцев	Протереть внешние поверхности шкафа ветошью в случае чрезмерного накопления пыли и грязи. Визуально проверить отсутствие механических повреждений корпуса шкафа, надежности его установки, наличие маркировки и пломб. Проверить надежность крепления внешних кабелей в
Удаление пыли	1 раз в год	герметичных вводах. Отключить питание шкафа. Снять защитные панели шкафа. Удалить пыль с контактов и поверхностей оборудования внутри шкафа при помощи пылесоса и кисти.

Наименование работы	Периодичность проведения	Перечень работ
Проверка надежности подключения проводов и разъемов	1 раз в год	Подтянуть винты контактных колодок крепления проводов. Проверить надежность крепления разъемов. Проверить целостность проводов и кабелей, проверить надежность подключения проводов заземления.
Проверка работоспособности резервного источника питания	1 раз в год	Предварительно выдержать резервный источник питания во включенном состоянии не менее 4 ч. Проверить работоспособность резервного источника питания, отключив его от сети питания. Контроллер БКД-ПК-RF должен работать в течение времени, необходимом для передачи информации на сервер системы об отсутствии напряжения основного источника питания. При необходимости заменить аккумуляторную батарею на аналогичную. Рекомендуемый срок службы аккумуляторной батареи составляет 5 лет.
Проверка элемента питания контроллера БКД-ПК-RF	1 раз в год	Измерить напряжение элемента питания контроллера БКД-ПК-RF при помощи вольтметра, которое должно быть 3,3 В ±10 %, при необходимости, заменить элемент питания на новый аналогичный.
Проверка режимов работы шкафа	1 раз в год	Проверить возможность переключения линий «Лампы» вручную: установить переключатели S1 — S6 в положение «РУЧ» и убедиться в подаче напряжения на линии «Лампы», затем перевести S1 — S6 в положение «ВЫКЛ» и убедиться в снятии напряжения с линий «Лампы». Проверить переключение групп освещения вручную: установить переключатели S1 — S6 в положение «АВТ». Проверить возможность управления в соответствии с полученными командами (сценарием) от системы сбора данных. Проверить переключение линий «Лампы» в соответствии с выбранным оператором сценарием.
		Отключить антенну GSM от разъема X1 контроллера БКД-ПК-RF и отключить антенну от резервного GSM модема. Проверить, что в местном автоматическом режиме переключение линий «Лампы» осуществляется в соответствии с заданным графиком (сценарием), занесенным в память контроллера БКД-ПК-RF.
		Перевести шкаф ЩУ АХП в наладочный режим. Удаленно дать команды изменения настроечных параметров выбранного шкафа на карте объекта на АРМ оператора. Проверить изменение настроечных параметров и режимов работы шкафа. Убедиться в том, что в наладочном режиме не происходит регистрация сообщений об изменении состояния шкафа в отчетных формах.
Проверка формирования сообщения при открывании дверцы шкафа	1 раз в год	Открыть дверцу шкафа, оборудованного охранным датчиком и проверить поступление в систему сбора данных информации о срабатывании охраны с указанием адреса шкафа и времени события.

Наименование работы	Периодичность проведения	Перечень работ
Проверка передачи информации об отказе	1 раз в год	Отсоединить разъем интерфейса RS-485 от счетчика электроэнергии. Проверить поступление в систему сбора данных информации о неисправности линий связи счетчика с указанием адреса шкафа и времени события.
Проверка передачи информации в систему сбора данных	1 раз в год	Проверка полноты номенклатуры измеряемых и контролируемых параметров и правильности их отображения проводится в ходе непрерывной работы системы сбора данных. Проверка правильности отображения номенклатуры измеряемых и контролируемых параметров шкафа осуществляется визуально сличением параметров, отображаемых на дисплее APM оператора с действительными параметрами, указанными в рабочем проекте. Все параметры должны быть полностью идентичны. Состояние отображаемых сигналов должно соответствовать фактическому состоянию линий «Лампы 1-12» и электрооборудованию шкафа.
Проверка передачи информации в базу данных системы сбора данных	1 раз в год	Проверка заключается в снятии архивированных данных счетчика электроэнергии за последний фиксированный интервал времени при помощи технических средств, входящих в комплект поставки счетчика и сравнении с архивированными значениями, полученными при запросе с APM оператора. Архивные значения на мониторе APM оператора должны совпадать с соответствующими значениями, снятыми непосредственно со счетчика.
Проверка корректировки времени	1 раз в год	На компьютере сервера системы производят изменение системного времени путем ввода нового значения типовым способом для Windows. Затем в течение не более одного часа считывают показания часов контроллера БКД-ПК-RF при помощи WEB браузера в меню «Состояние подключения». Полученные значения сравниваются с показаниями внутренних часов сервера. После корректировки разность показаний часов контроллера и часов сервера не должна превышать ±3 с.
Проверка электрического сопротивления изоляции	1 раз в 3 года	Измерить сопротивление изоляции силовых цепей шкафа в соответствии с ПУЭ. Предварительно отключить все цепи контроллера БКД-ПК-RF, преобразователя интерфейсов, модулей САТ3907 и M-DMX, модема, счетчика электроэнергии, приемника GPS, блоков питания, резервного источника напряжения.
Поверка счетчика электрической энергии	1 раз в 10 лет	Поверка счетчика электрической энергии производится в соответствии с методикой поверки органами Государственной метрологической службы.

Перечень возможных неисправностей шкафа ШУ АХП и способы их устранения приведены в таблице 5.

Таблица 5

Признаки проявления неисправности	Возможные причины	Действия по устранению неисправности
Не светится индикатор	Отсутствует напряжение	Проверить напряжение питания

Признаки проявления неисправности	Возможные причины	Действия по устранению неисправности
«Питание» контроллера БКД- ПК-RF	питания контроллера БКД-ПК- RF	на входе X4 контроллера БКД-ПК- RF, а также на выходе источника бесперебойного питания.
	Перегорела плавкая вставка контроллера БКД-ПК-RF	Заменить неисправную плавкую вставку
Информация не передается на сервер системы, мигает светодиод «Связь с сервером»	Не верная настройка параметров контроллера БКД- ПК-RF	Произвести корректировку файлов конфигурации device.ini, opros.ini, sos95gw.conf в соответствии с технической документацией
	Не подключен кабель интерфейса Ethernet	Подключить кабель коммутатора локальной сети к разъему X8 контроллера БКД-ПК-RF
	SIM-карта не вставлена в держатель X2 контроллера БКД-ПК-RF	Установить SIM-карту
	Услуга GPRS оператора заблокирована	Связаться с оператором сотовой связи и разблокировать услугу GPRS
	Антенна GSM не подключена, недостаточный уровень сигнала сети GSM в месте установки шкафа	Подключить и подобрать оптимальное местоположение антенны GSM
Нет считывания данных из счетчика электроэнергии	Обрыв или замыкание кабеля RS-485	Проверить и устранить неисправность кабеля RS-485
Не светится индикатор GSM модема	Обрыв или замыкание кабеля RS-232	Проверить и устранить неисправность кабеля, проверить надежность крепления разъемов
Нет сообщения об открытии дверцы шкафа	Обрыв или замыкание кабеля датчика двери	Проверить и устранить неисправность кабеля
Ошибка хода часов	Нет приема сигнала ГЛОНАСС/GPS	Проверить мигание индикатора «Status» модуля СНП-01. Расположить антенну приемника в зоне уверенного приема сигнала ГЛОНАСС/GPS
Отсутствие напряжения в линиях «Лампы» при подаче команды на включение канала управления	Срабатывание автоматических выключателей, УЗО	Устранить перегрузку по току или утечку тока в цепях нагрузки
Отсутствует переключение групп освещения по	Обрыв или замыкание кабеля RS-232 модуля CAT3907	Проверить и устранить неисправность
командам из удаленного пункта	Обрыв или замыкание кабеля RS-485 модуля M-DMX	Проверить и устранить неисправность
	Включен ручной режим управления	Перевести переключатели режима работы в положение «ABT»

СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ

Шкаф управления освещением ШУ АХП упакован предприятием-изготовителем согласно требованиям, предусмотренным действующей технической документацией.

Упаковщик			
личная подпись		Ф.И.О.	число, месяц, год
СВИДЕТЕЛІ	ьство о приемк	E	
			зав. № 2012 и признан годным для
Начальник ОТК			
МП			
личная подпи	СЬ	Ф.И.О.	
число, месяц, г	——— од		

ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

Шкаф ШУ АХП в упакованном виде следует транспортировать в крытых транспортных средствах (железнодорожных вагонах, закрытых автомашинах) в соответствии с правилами перевозки грузов, действующими на соответствующем виде транспорта. Механические воздействия и климатические условия при транспортировании не должны превышать допустимые значения:

- категория Л по ГОСТ 23170-78;
- температура окружающего воздуха от (-40 ... +70) °C;
- относительная влажность окружающего воздуха (10...95) % при +25 °C.

При транспортировании необходимо соблюдать меры предосторожности с учетом предупредительных надписей на транспортных ящиках. Расстановка и крепление ящиков в транспортных средствах должны обеспечивать их устойчивое положение, исключать возможность смещения ящиков и соударения.

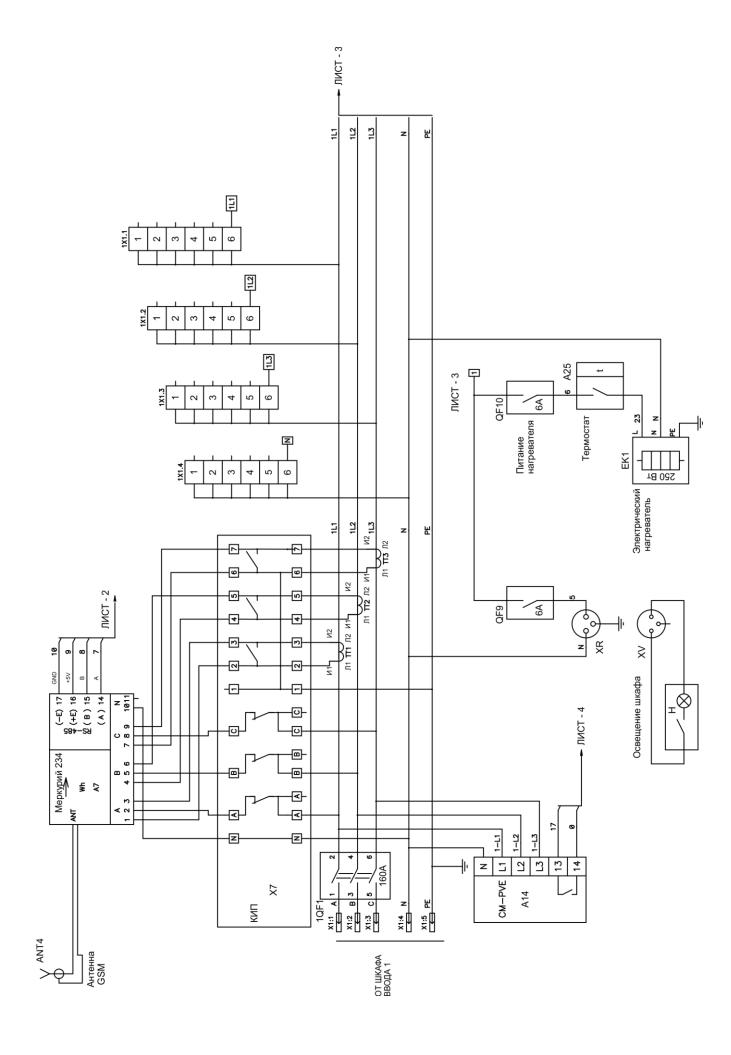
Шкаф ШУ АХП следует хранить в упакованном виде (допускается хранение в транспортной таре) в отапливаемых помещениях группы 1 (Л) по ГОСТ 15150-69 при отсутствии в воздухе кислотных, щелочных и других агрессивных примесей.

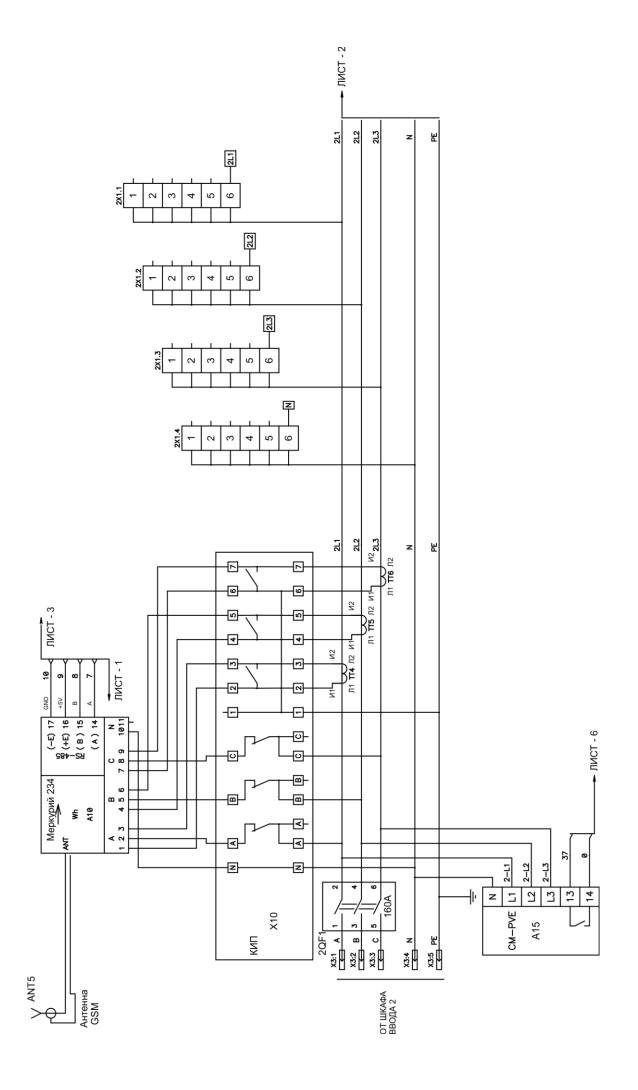
Хранить шкаф ШУ АХП следует с полностью заряженным аккумулятором резервного источника питания. Переключатель «АКБ» перевести в положение «Выкл.» Во время длительного хранения необходимо заряжать аккумулятор ИБП один раз в 3 месяца.

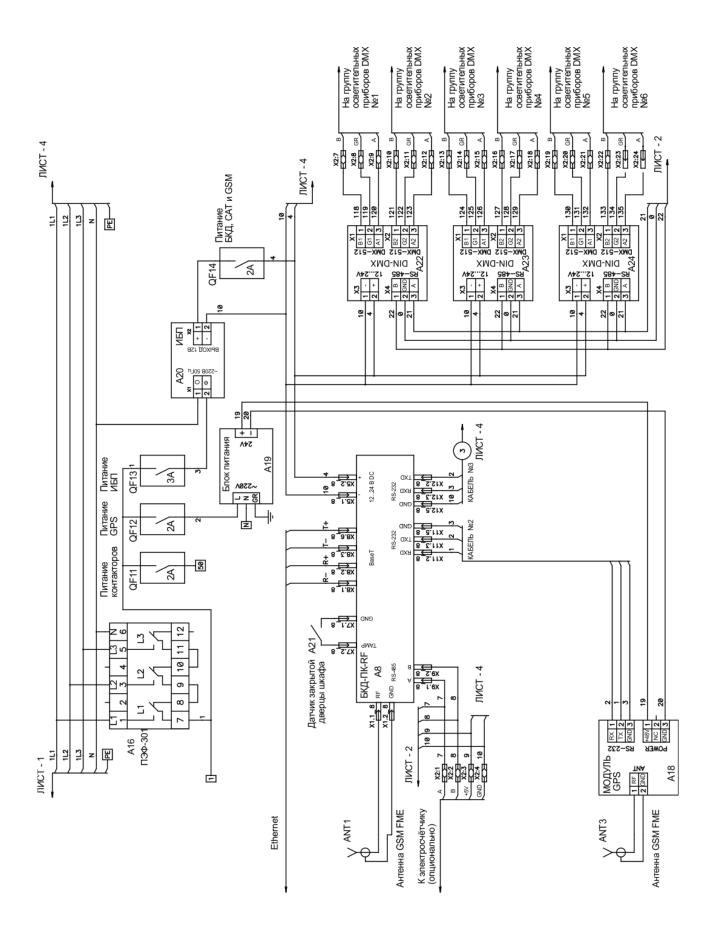
ГАРАНТИИ ИЗГОТОВИТЕЛЯ

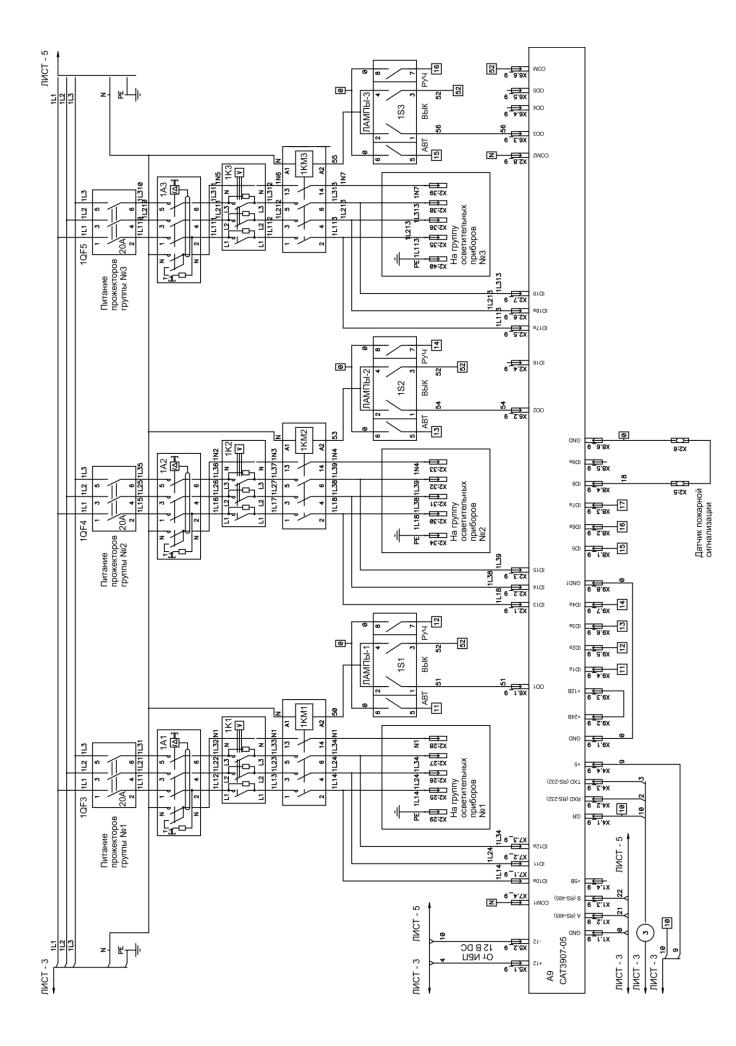
Изготовитель гарантирует соответствие шкафа ШУ АХП требованиям ТУ 3434-002-58078449-2012 при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации компонентов системы.

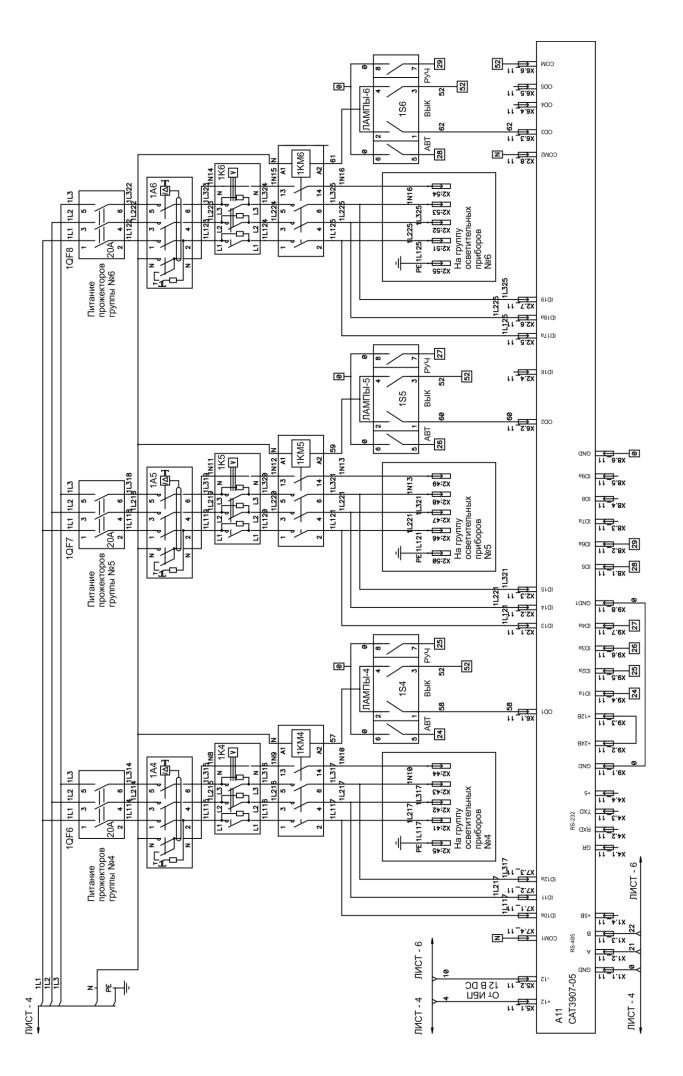
Гарантийный срок эксплуатации системы – 24 месяца со дня ввода в эксплуатацию.

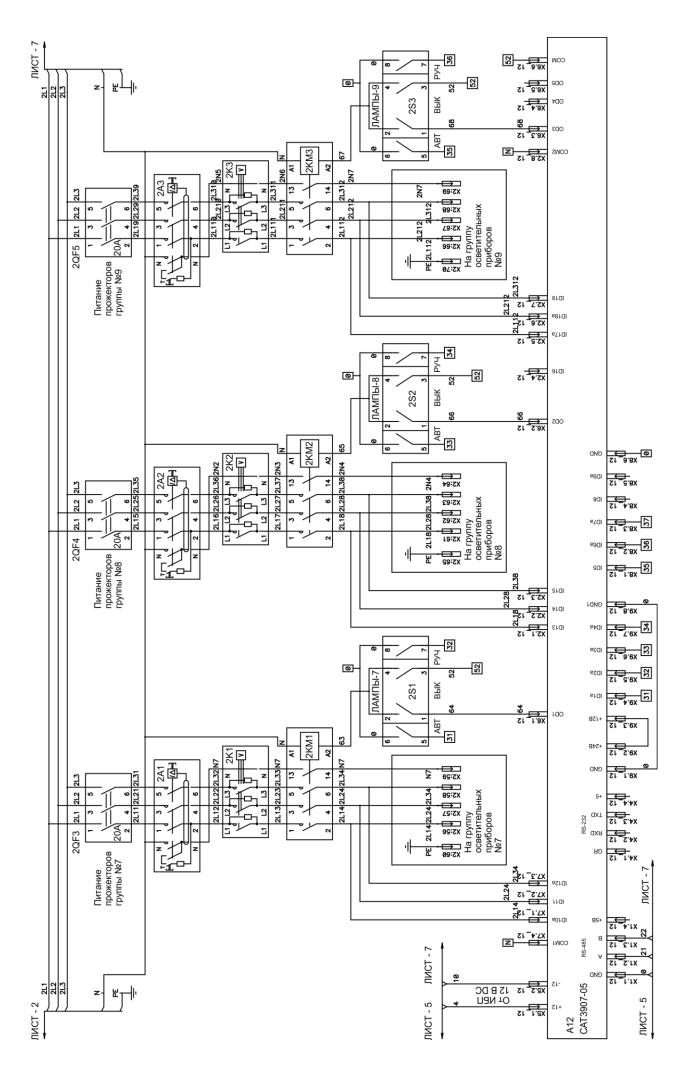

В течение действия гарантийного срока эксплуатации предприятие-изготовитель обязуется произвести ремонт отказавших шкафов ШУ АХП при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.

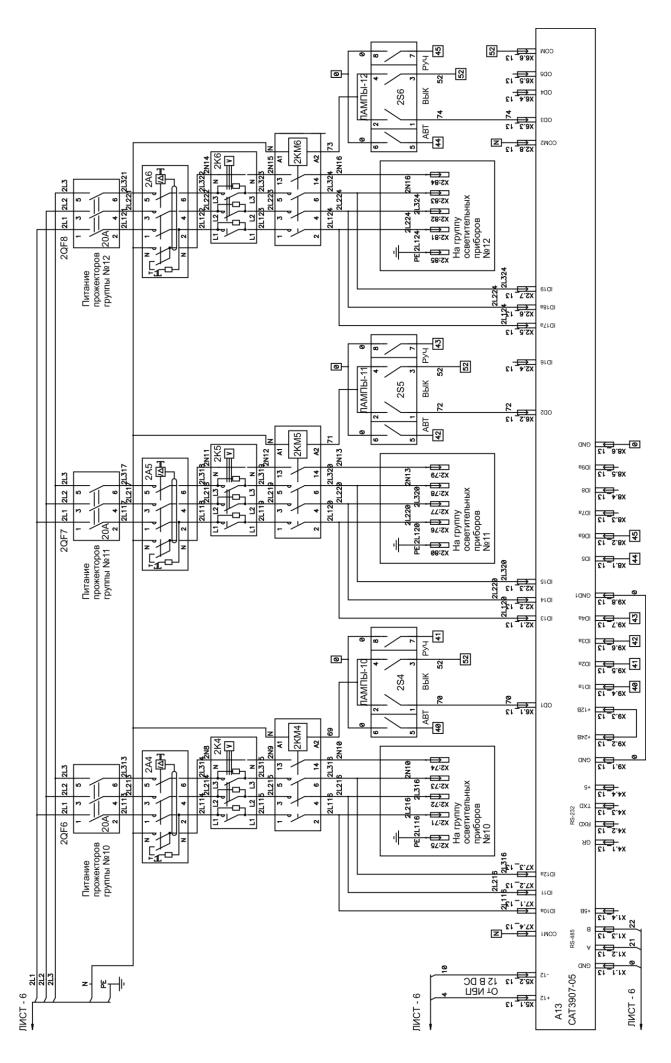

Действие гарантийных обязательств прекращается при истечении гарантийного срока эксплуатации или нарушении пломб предприятия - изготовителя.

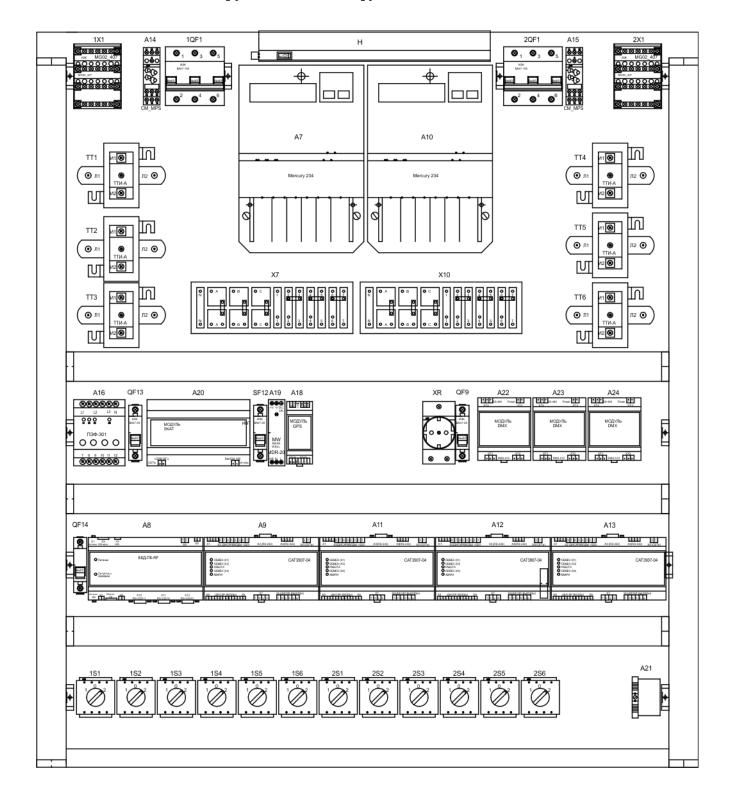

Действие гарантийных обязательств не распространяются на аккумулятор резервного источника питания.

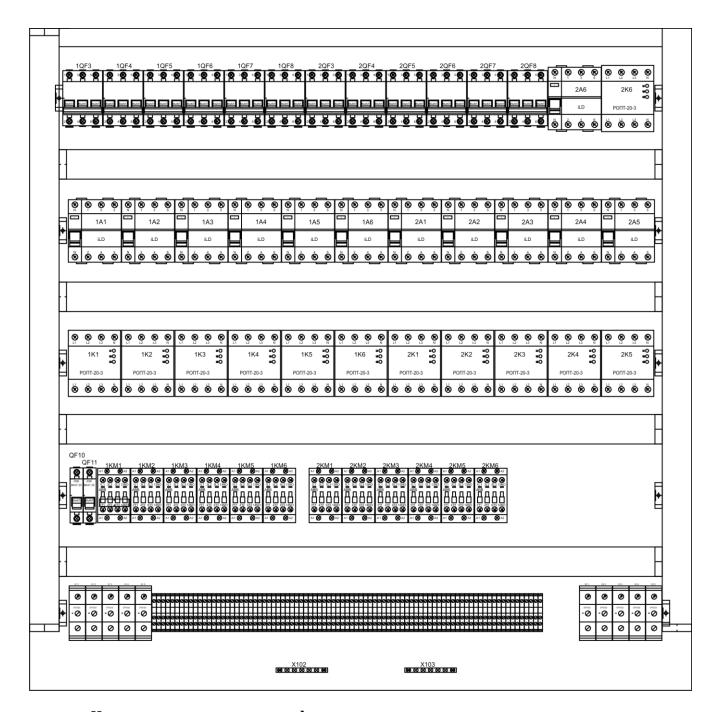

приложение


Схемы шкафов электрические принципиальные







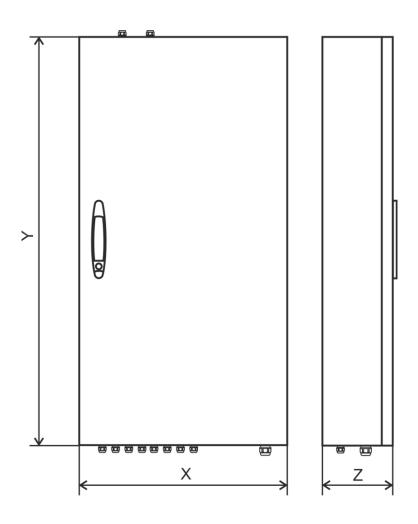

Перечень оборудования шкафа

Позиция	Наименование	К	Назначение
		0	
		Л.	
1A1-1A6, 2A1-2A6	Выключатель дифференциального тока iID A9R41425 25A 30мA Schneider Electric	1 2	Защита человека от поражений электрическим током при его соприкосновении с токоведущими частями электрооборудования либо при утечке электрического тока
A7, A10	Счетчик электрической энергии трехфазный статический Меркурий 234 ARTM-01 PB.G Инкотекс	2	Учет активной, реактивной электрической энергии и мощности в одном направлении в трехфазных 4-х проводных цепях групп освещения переменного тока частотой 50 Гц через трансформатор тока с возможностью тарифного учёта по зонам суток. Измерение параметров электропитания групп освещения (напряжение, ток, частота)
A8	Контроллер БКД-ПК-RF МНПП САТУРН	1	Считывание данных счетчика электрической энергии, управление работой модулей САТЗ907, СНП-01, М-DMX, передача данных на сервер системы
A9, A11- A13	Модуль управления САТ3907-05 МНПП САТУРН	4	Контроль напряжения в контрольных точках и управление контакторами групп освещения по командам контроллера БКД-ПК-RF
A14, A15	Реле контроля напряжения CM- PVE 1SVR550870R9400 ABB	2	Контроль следования фаз напряжения и уровня напряжения (187- 265) В силовой цепи питания групп освещения
A16	Универсальный автоматический электронный переключатель фаз ПЭФ-301	1	В зависимости от наличия и качества напряжения на фазах ПЭФ-301 автоматически производит выбор наиболее благоприятной фазы и запитывает от нее БКД-ПК-RF, CAT3907, СНП-01, M-DMX, ИБП
A18	Спутниковый навигационный приемник СНП-01 АйСиБиКом	1	Прием сигналов точного времени GPS
A19	Блок питания MDR 10-24 Meanwell	1	Формирование постоянного стабилизированного напряжения 24 В для питания СНП-01
A20	ИБП SKAT-12DC-1.0	1	Формирование бесперебойного постоянного стабилизированного напряжения 12 В для питания БКД-ПК-RF, CAT3907, M-DMX
A21	Извещатель охраный магнитоконтактный ИО 102-20 БП	1	Контроль открытия дверцы шкафа
A22-A24	Контроллер M-DMX МНПП САТУРН	3	Преобразование сигналов интерфейса RS-485 в сигналы интерфейса DMX 512

			(6 каналов)
A25	Термостат	1	Поддержание положительной температуры воздуха внутри шкафа в холодное время года, управление нагревателем воздуха
1K1-1K6, 2K1-2K6	Реле ограничения пускового тока РОПТ-20-3 Полигон	1 2	Ограничение пускового тока при подключении индуктивной или емкостной нагрузки силовой цепи групп освещения при помощи гасящих резисторов
1KM1- 1KM6, 2KM1- 2KM6	Контактор AF-16-30-10-13 3HO 100/250B AC/DC 25A, 4HO, 220/240B AC ABB	1 2	Коммутация силовой цепи группы освещения
1QF1, 2QF1	Выключатель автоматический iK60N 160A C Schneider Electric	2	Защита электрической сети от коротких замыканий и перегрузок
1QF3- 1QF8, 2QF3- 2QF8	Выключатель автоматический iK60N 20A C Schneider Electric	1 2	Защита силовой цепи группы освещения от коротких замыканий и перегрузок
QF9, QF10	Выключатель автоматический iK60N 6A C Schneider Electric	2	Защита электрической сети от коротких замыканий и перегрузок
QF11, QF12, QF14	Выключатель автоматический iK60N 2A C Schneider Electric	3	Защита электрической сети от коротких замыканий и перегрузок
QF13	Выключатель автоматический iK60N 3A C Schneider Electric	1	Защита электрической сети от коротких замыканий и перегрузок
1S1-1S6, 2S1-2S6	Переключатель кулачковый 3поз. (1-0-2) 2 уровня 25А 1SCA113984R1001 ABB	1 2	Переключение режимов работы шкафа
TT1-TT6	Трансформатор тока измерительный на напряжение 0,66кВ типа ТТИ-А кл. 0,5	6	Предназначены для передачи сигнала измерительной информации счетчику электроэнергии
X1, X3	Клемма винтовая 70 мм2 серая D70/22 ABB	1 0	комплект
X2	Клемма винтовые на DIN-рейку серая MA2,5/5 ABB	8 5	комплект
X7, X10	Коробка испытательная переходная КИП	2	Отключение цепей счетчика при периодической поверке или замене без отключения цепи нагрузки
Н	Светильник люминесцентный ЛПБ- 8w (TL2001/CAB28A)	1	Освещение рабочего места
XR	Розетка на DIN-рейку с заземлением контактов РАр 10-3- ОП IEK	1	Подключение кабеля питания светильника

Размещение оборудования в шкафу

Назначение разъемов шкафа


Разъем	Назначение
X1.1	Ввод 220/330 В фаза А канал 1
X1.2	Ввод 220/380 В фаза Б канал 1
X1.3	Ввод 220/380 В фаза С канал 1
X1.4	Нейтраль 380/220 В канал 1
X1.5	Защитное заземление канал 1
X2.1	Выход А интерфейса RS-485 счетчика электроэнергии
X2.2	Выход В интерфейса RS-485 счетчика электроэнергии
X2.3	Питание +5В
X2.4	Общий интерфейса RS-485 счетчика электроэнергии
X2.5	Вход пожарной сигнализации

X2.6	Общий пожарной сигнализации			
X2.7	Выход В интерфейса RS-485 (DMX-2) канал 1			
X2.8	Общий			
X2.9	Выход А интерфейса RS-485 (DMX-2) канал 1			
X2.10	Выход В интерфейса RS-485 (DMX-2) канал 2			
X2.11	Общий			
X2.12	Выход А интерфейса RS-485 (DMX-2) канал 2			
X2.13	Выход В интерфейса RS-485 (DMX-2) канал 3			
X2.14	Общий			
X2.15	Выход А интерфейса RS-485 (DMX-2) канал 3			
X2.16	Выход В интерфейса RS-485 (DMX-2) канал 4			
X2.17	Общий			
X2.18	Выход А интерфейса RS-485 (DMX-2) канал 4			
X2.19	Выход В интерфейса RS-485 (DMX-2) канал 5			
X2.20	Общий			
X2.21	Выход А интерфейса RS-485 (DMX-2) канал 5			
X2.22	Выход В интерфейса RS-485 (DMX-2) канал 6			
X2.23	Общий			
X2.24	Выход А интерфейса RS-485 (DMX-2) канал 6			
X2.25	Выход фаза А линия 1			
X2.26	Выход фаза В линия 1			
X2.27	Выход фаза С линия 1			
X2.28	Выход N линия 1			
X2.29	Защитное заземление линия 1			
X2.30	Выход фаза А линия 2			
X2.31	Выход фаза В линия 2			
X2.32	Выход фаза С линия 2			
X2.33	Выход N линия 2			
X2.34	Защитное заземление линия 2			
X2.35	Выход фаза А линия 3			
X2.36	Выход фаза В линия 3			
X2.37	Выход фаза С линия 3			
X2.38	Выход N линия 3			
X2.39	Защитное заземление линия 3			
X2.40	Выход фаза А линия 4			
X2.41	Выход фаза В линия 4			
X2.42	Выход фаза С линия 4			
X2.43	Выход N линия 4			

X2.44	Защитное заземление линия 4			
X2.45	Выход фаза А линия 5			
X2.46	Выход фаза В линия 5			
X2.47	Выход фаза С линия 5			
X2.48	Выход N линия 5			
X2.49	Защитное заземление линия 5			
X2.50	Выход фаза А линия 6			
X2.51	Выход фаза В линия 6			
X2.52	Выход фаза С линия 6			
X2.53	Выход N линия 6			
X2.54	Защитное заземление линия 6			
X2.55	Выход фаза А линия 7			
X2.56	Выход фаза В линия 7			
X2.57	Выход фаза С линия 7			
X2.58	Выход N линия 7			
X2.59	Защитное заземление линия 7			
X2.60	Выход фаза А линия 8			
X2.61	Выход фаза В линия 8			
X2.62	Выход фаза С линия 8			
X2.63	Выход N линия 8			
X2.64	Защитное заземление линия 8			
X2.65	Выход фаза А линия 9			
X2.66	Выход фаза В линия 9			
X2.67	Выход фаза С линия 9			
X2.68	Выход N линия 9			
X2.69	Защитное заземление линия 9			
X2.70	Выход фаза А линия 10			
X2.71	Выход фаза В линия 10			
X2.72	Выход фаза С линия 10			
X2.73	Выход N линия 10			
X2.74	Защитное заземление линия 10			
X2.75	Выход фаза А линия 11			
X2.76	Выход фаза В линия 11			
X2.77	Выход фаза С линия 11			
X2.78	Выход N линия 11			
X2.79	Защитное заземление линия 11			
X2.80	Выход фаза А линия 12			
X2.81	Выход фаза В линия 12			

X2.81	Выход фаза С линия 12
X2.83	Выход N линия 12
X2.84	Защитное заземление линия 12
X3.1	Ввод 220/330 В фаза А канал 2
X3.2	Ввод 220/380 В фаза Б канал 2
X3.3	Ввод 220/380 В фаза С канал 2
X3.4	Нейтраль 380/220 В канал 2
X3.5	Защитное заземление канал 2

Габаритные размеры шкафа

Тип шкафа	Размер шкафа			
	X	Y	Z	
ЩПН-зс 452 Элма	500	400	220	
Schneider Electric 08004	780	550	186	
Schneider Electric 08006	1080	550	186	
CM 5122.500 Rittal	1400	1000	400	
TS 8005.500 Rittal	2000	1000	500	